

# Experimental databases and model of N<sub>2</sub>O emissions by croplands Do we have what is needed to explore mitigation options?

Workshop of the GRA 17-19 March 2014, Paris

# Oral presentations presented during the workshop







17-19 March 2014 PARIS

Workshop "Experimental databases and model of N<sub>2</sub>O emissions by croplands: do we have what is needed to explore mitigation options?"



| CROPLAN      | DS                    |
|--------------|-----------------------|
| GROUP        | GLOBAL                |
|              | RESEARCH              |
|              | ALLIANCE              |
| ON AGRICULTU | IRAL GREENHOUSE GASES |

| Contents                  |                                                                           |     |
|---------------------------|---------------------------------------------------------------------------|-----|
| Opening session           |                                                                           | 4   |
| Introduction - Sylvain P  | ellerin, Pierre Cellier, Alan Franzluebbers                               | 5   |
| Introductory lectures:    |                                                                           |     |
| - Klaus Butterbach-Bahl   |                                                                           | 12  |
| - Pete Smith              |                                                                           | 47  |
| - Mark Liebig and Pierre  | Cellier                                                                   | 77  |
| Objectives of the works   | shop: Sylvain Pellerin, Pierre Cellier                                    | 107 |
| Session 1 - Fertilisation | n techniques                                                              | 118 |
| Key note lecture - Philip | ope Rochette                                                              | 119 |
| Short presentations:      |                                                                           |     |
| - Elizabeth Pattey        |                                                                           | 163 |
| - Raia Silvia Massad      |                                                                           | 172 |
| Session 2 - Soil tillage  |                                                                           | 190 |
| Key note lecture - Brun   | o Mary                                                                    | 191 |
| Short presentations:      |                                                                           |     |
| - Charles Rice            |                                                                           | 224 |
| - Lutz Merbold            |                                                                           | 234 |
| - Emma Suddick            | Workshon "Experimental databases and model of N2O emissions by croplands: | 248 |
| PARIS                     | do we have what is needed to explore mitigation options?"                 | 1   |



| Session 3 - Cover crops, legumes and emissions at rotation scale     | 257 |
|----------------------------------------------------------------------|-----|
| Key note lecture - Bob Rees                                          | 258 |
| Short oral presentations:                                            |     |
| - Marie-Hélène Jeuffroy, Pierre Cellier                              | 264 |
| - Xiaoxi Li                                                          | 275 |
| - Alberto Sanz-Cobeña                                                | 283 |
| Session 4 - Other management practices and combination of techniques | 298 |
| Key note lecture - Per Ambus                                         | 299 |
| Short oral presentations:                                            |     |
| - Abdalla Mohamed                                                    | 322 |
| - Joël Leonard                                                       | 334 |
| - Anthony Vermue, Catherine Hénault                                  | 345 |
| - Yam Kanta Gaihre                                                   | 354 |
| Cross-cutting session                                                | 370 |
| Key note lecture – Steve Del Grosso                                  | 371 |
| Conclusion                                                           | 396 |



# **Opening session**

Chair: Alan Franzluebbers Co-chair: Raia Silvia Massad

Introduction - Sylvain Pellerin, Pierre Cellier, Alan Franzluebbers

#### Introductory lectures:

- Klaus Butterbach-Bahl
- Pete Smith
- Mark Liebig and Pierre Cellier

#### Objectives of the workshop: Sylvain Pellerin, Pierre Cellier



# Welcome address and introduction

Sylvain Pellerin, Pierre Cellier, Alan Franzluebbers INRA, France US Department of Agriculture - Agricultural Research Service





# The Global Research Alliance on Agricultural Greenhouse Gases

- Aim: linking up efforts and achieve faster progress towards the solutions needed for reducing the contribution of agriculture to climate change.
- Launched in December 2009
- 40 member countries
- Founded on the voluntary, collaborative efforts of countries



# **GRA** organisation

| ł             | Alliance Counc        |                 |
|---------------|-----------------------|-----------------|
|               | <b>Research Group</b> | S               |
| Livestock     | Croplands             | Paddy Rice      |
| Soil carbon & | nitrogen cycling cros | s-cutting group |
| Inventory &   | measurement cross-    | cutting group   |
|               |                       |                 |
|               | Alliance Secretariat  |                 |

17-19 March 2014 PARIS

Workshop "Experimental databases and model of N<sub>2</sub>O emissions by croplands: do we have what is needed to explore mitigation options?"

# Croplands Research Group

- Co-chaired by Alan Franzluebbers (USA) and Ladislau Martin-Neto (Brazil)

- Three components

1. Quantifying net greenhouse gas emissions in cropland management systems (P. Cellier, France / C. Rice, USA)

2. Assessing greenhouse gas emissions in agricultural peatlands and wetlands (L. Oygarden, Norway / A. Klemedtsson, Sweden / K. Regina, Finland).

3. Modelling carbon and nitrogen emissions (N. Cavallaro, USA / S. Pellerin, France)

- The workshop "Experimental databases and model of  $N_2O$  emissions by croplands: do we have what is needed to explore mitigation options?" is co-organised by components 1 and 3.





Why a workshop dedicated to the effect of management practices on  $N_2O$  emissions and modelling?

- 66% of gross anthropogenic  $N_2O$  comes from agriculture.  $N_2O$  is mainly produced by agricultural soils.
- Because of its global warming potential (296 times greater than that of the  $CO_2$ )  $N_2O$  strongly affects the global GHG budget of croplands

 $\Rightarrow$  e.g. in poorly aerated soils the benefit of the adoption of no-till on C sequestration could be offset by increased N<sub>2</sub>O emissions

• N<sub>2</sub>O emissions are influenced by many agricultural management practices (N fertilisation rate, forms and placement, tillage, residue management,...), which in turn offer levers for mitigation



CROPLANDS GROUP

GLOBAI

Origin of anthropogenic N<sub>2</sub>O emissions in 2005 (UNEP, 2014)







# General organisation of the workshop

-Three introductory lectures:

Basic processes of  $N_2O$  emissions from agricultural soils State of the art of  $N_2O$  emission models Experimental measurements and databases

- Objectives and expected outcomes of the workshop
- Four sessions dedicated to key management practices that influence  $N_2O$  emissions and offer levers for mitigation (1 key-note+3 volunteered presentations +discussion)

Fertilisation techniques

Soil tillage

Cover crop and residues management

Other management practices and combinations of techniques

- One session on cross-cutting issues

What are the key compartments/processes which must be considered in simulation models to account for the effect of management practices ? (key note)

Three slots of discussion on cross-cutting issues (short introduction+discussion)

- Final discussion and conclusion



# **Introductory lecture**

# Nitrous oxide emissions from soils, current understanding of the processes and modelling

Klaus Butterbach-Bahl KIT, Germany





## Nitrous oxide emissions from soils, current understanding of the processes and modelling

Butterbach-Bahl K<sup>1,2</sup>, Baggs EM<sup>3</sup>, Dannenmann M<sup>1</sup>, Kiese R<sup>1</sup> and Zechmeister-Boltenstern S<sup>4</sup>

- <sup>1)</sup> Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- <sup>2)</sup> Interrnational Livestock Research Institute, Nairobi, Kenya
- <sup>3)</sup> Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- emporal scale of interactions of processes <sup>4)</sup> University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Austria



## Outline



- (1) Nitrogen processes and N<sub>2</sub>O production and consumption
- (2) Techniques to characterize and quantify soil processes
- (3) Environmental controls of N<sub>2</sub>O fluxes at various spatial and temporal scales
- (4) Shortcomings of available flux measurements techniques
- (5) Modeling soil N<sub>2</sub>O fluxes present status and remaining uncertainties

(6) Conclusions

#### (1) Nitrogen processes

#### 2) Tech (3) En (4) Shortc (5) Modeling s (6) Conclusions

## Major N<sub>r</sub> transformation processes in soils



LIVESTOCK RESEARCH



#### (1) Nitrogen processes

16

#### (2) Tech (3) En (4) Shortc (5) Modeling s (6) Conclusions



(2) Tech (3) En (4) Shortc (5) Modeling s (6) Conclusions





) Nitrogen process (2) Techniques to characterize soil processes

# Nitrification and denitrification genes and source partitioning of $N_2O$ production







Atmosphere-Biosphere Interactions and Global Change, Biogeochemical Processes



# Quantification of microbial N<sub>2</sub>O production-/consumption



$$\begin{array}{l} \underline{N_2O} \\ N-N-O \\ \beta \\ \alpha \end{array} \stackrel{15N \text{ site preference}}{} = \delta^{15}N^{\alpha} - \delta^{15}N^{\beta} \\ 1^5N; 1^8O \text{ enrichment} \end{array}$$

Institute for Meteorology and Climate Research, Atmosphere-Biosphere Interactions and Global Change, Biogeochemical Processes

Wrage et al., 2005, RCM; Baggs, 2008, RCM

1) Nitrogen process (2) Techniques to characterize soil processes

Major pathways of N<sub>2</sub>O formation (Kool et al. 2009 Soil Biol. Biochem)



Conclusions

Nitrogen process (2) Techniques to characterize soil processes

N<sub>2</sub>O Isotopic signals vor various microbial groups and environmental conditions (Well & Flessa 2009, J Geophys res. G02020)

|                                                    | $\Delta \delta^{18}$ O (‰) | Ebulk (‰)             | $\varepsilon_{\rm SP}{}^{\rm b}$ (‰) |
|----------------------------------------------------|----------------------------|-----------------------|--------------------------------------|
| acterial denitrifiers                              |                            |                       |                                      |
| Pseudomonas chlororaphis Pseudomonas aureofaciens  |                            | -12.7 to -36.7        |                                      |
| Pseudomonas fluorescens                            | -3 to 32                   | -39 to -17            | -22.2 to -24.1                       |
| Pseudomonas denitrificans Paracoccus denitrificans | 4 to 23                    | -10 to $-22$          | -5.1 to -5.7                         |
| Paracoccus denitrificans                           |                            | $-26.6 \pm 1.2$       |                                      |
| Paracoccus denitrificans                           |                            | $-26.9 \pm 2.6$       |                                      |
| Pseudomonas aureofaciens                           | 40                         | Children Street State |                                      |
| ungal denitrifiers                                 |                            |                       |                                      |
| Fusarium. oxsporum                                 |                            | -6.6 to -74.7         | 36.9 to 37.1                         |
| Cylindrocarpon tonkinense                          |                            | and and another       |                                      |
| oils                                               |                            |                       |                                      |
| Tropical forest soils                              |                            | -10 to $-45$          | $31 \pm 8$                           |
| Arable soil                                        |                            | 11 to 29.4            |                                      |
| andy aquifer                                       | -8                         | -15.9                 |                                      |

Conclusions

LIVESTOCK RESEARCH

S



### Source partitioning of N<sub>2</sub>O production (Kool et al. 2010 Eur J Soil Sci)



#### Soil incubations 16°C, 80% WHC

- a) <sup>18</sup>O in  $H_2O$  enriched
- b) <sup>18</sup>O in NO<sub>3</sub> enriched
- c)  ${}^{15}N$  in NO<sub>3</sub> enriched
- d) <sup>15</sup>N in NH<sub>4</sub> enriched



[A2, A3 = arable soils]

24

Atmosphere-Biosphere Interactions and Global Change, **Biogeochemical Processes** 

# Isotope approaches for source partitioning

of  $N_2O$  fluxes (Baggs, 2008, RCM)



|                                                     | Advantages                                                             | Disadvantages                                                                                                                                                       |  |  |  |  |
|-----------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Natural                                             | Non-obtrusive                                                          | Lack of quantification                                                                                                                                              |  |  |  |  |
| abundance<br>(d <sup>15</sup> N, d <sup>18</sup> O) | Potential for source partitioning over<br>a large scale                | Fractionation not known for all processes                                                                                                                           |  |  |  |  |
|                                                     | Less expensive than isotope<br>enrichment approaches                   | Fractionation may differ between strains                                                                                                                            |  |  |  |  |
| Isotope<br>enrichment                               | Emissions can be related to input (e.g. fertiliser, residues, water)   | <sup>18</sup> O-H <sub>2</sub> O not suitable under<br>field conditions                                                                                             |  |  |  |  |
| ( <sup>15</sup> N, <sup>18</sup> O<br>atom %        | Potential to link source partitioning to nano-scale imaging            | No discrimination of nitrate<br>dissimilation processes                                                                                                             |  |  |  |  |
| excess)                                             | Potential for elucidating interactions with other processes and cycles | Obtrusive →natural systems<br>Undesirable fertilisation<br>Homogeneous distribution                                                                                 |  |  |  |  |
| Site<br>preference                                  | Precision > as natural abundance                                       | Lack of quantification                                                                                                                                              |  |  |  |  |
| (d <sup>15</sup> N <sup>α,β</sup> )                 | estimating nitrate<br>ammonifier-N <sub>2</sub> O                      | Denitrification = nitrifier denitrification<br>Insufficient data for species and strains<br>Overlapping SPs limit source partition.<br>Lack of standard calibration |  |  |  |  |



# (1) Nitrogen process (2) Techniques to characterize soil processes

# Measurement of $N_2$ , $N_2O$ and NO production

(Wang et al. 2013, Plant & Soil)





ILRI INTERNATIONAL LIVESTOCK RESEARCH

1) Nitrogen process (2) Techniques to characterize soil processes

# Relating N<sub>2</sub>O production to microbial community

**COMPOSITION** (Wallenstein et al. 2006 Ecol.Applic.)





- Quantification of gene copies of relevant nitrification/ denitrification genes
  - Most studies failed to show significant relationships to N<sub>2</sub>O fluxes
  - Gene coding for N<sub>2</sub>O (norB/ norC) seldom studied (missing primer)
- Quantification of mRNA driving enzyme formation
  - Increasingly used, allows a direct link nitrification/ denitrification activity
  - Few studies only, even less for N<sub>2</sub>O
- Combination of methods (enzymes, isotopes, mRNA/DANN)
  - pH effects on N<sub>2</sub>O production (e.g. Cuhel et al., 2010, Appl. Environm. Microbiol.)

Quickly developing field, though methodological and scale problems needs to be solved, new insights in process regulation can be expected

Conclusions



(1) Nitroger (2) Techniques to cha (3) Environmental controls

(6) Conclusions



#### Soil surface flux $N_2O = N_2O$ production – $N_2O$ consumption



(6) Conclusions

 $N_2$ O-isotope signals show significant  $N_2$ O consumption  $M_2$ 



(1) Nitroger (2) Techniques to cha (3) Environmental controls

(6) Conclusions

## Moisture-temperature control of soil trace gas fluxes

Karlsruhe Institute of Technology

Höglwald Forest, Germany (Luo et al. Biogeosciences, 2012)



(1) Nitroger (2) Techniques to cha (3) Environmental controls

(6) Conclusions

## Increased atmospheric CO<sub>2</sub> and soil N<sub>2</sub>O & CH<sub>4</sub> fluxes

Meta-data study (Van Groeningen et al. 2011 Nature, Knohl & Veldkamp 2011 Nature)



(6) Conclusions



## Freeze-thaw N<sub>2</sub>O fluxes

Höglwald Forest, Germany (Luo et al. Biogeosciences, 2012)



(1) Nitroger (2) Tech (3) Environmental c (4) Shortcomings measurements techniques

# Enigma of denitrification at various scales **On the fate of anthropogenic nitrogen**





| w h                           |                                                                                                                        | of the act                                                                                                                                                                                       | <b>~ fr</b> sv                                    |                                                        |                                                                                         | nat                           | ho                           | طيبية                                         | N <sub>2</sub> :gross | mean                                                                  | N <sub>2</sub> O:(N <sub>2</sub> O+N <sub>2</sub> ) |                 |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|------------------------------|-----------------------------------------------|-----------------------|-----------------------------------------------------------------------|-----------------------------------------------------|-----------------|
|                               | Molf and Brummo                                                                                                        |                                                                                                                                                                                                  | kg N ha yr                                        | nitrifcation<br>kg N ha <sup>-1</sup> yr <sup>-1</sup> | N <sub>2</sub> flut<br>nethod                                                           |                               |                              | ratio                                         | nitrification<br>(%)  | N <sub>2</sub> O:(N <sub>2</sub> O+N <sub>2</sub> )<br>this study ±SE | Schlesinger et<br>al. 2009 ±SE                      | Karlsruhe Insti |
| est, Germany<br>Wald)         | 2002<br>Brumme et al. 1999<br>Wolf and Brumme                                                                          | N-saturation                                                                                                                                                                                     | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux                                                             | 0.17                          | 0.71                         | 4.2                                           | n.a.                  | _                                                                     |                                                     | ission          |
| st, Germany                   | 2002<br>Brumme et al. 1999<br>Corre et al. 2003                                                                        | N-saturation                                                                                                                                                                                     | 211-744                                           | n.a.                                                   | <sup>15</sup> N gas<br>flux                                                             | 3                             | 0.51                         | 0.3                                           | 0.06-0.2              |                                                                       |                                                     |                 |
| luegrass, USA                 | Horgan et al. 2002                                                                                                     | Addition of 49 kg N ha $^{\cdot1}$ as $K^{15}NO_3^{\cdot}$                                                                                                                                       | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux                                                             | 0.1-2.9                       | 1.6-10.4                     | 2-11<br>(mean 5.5)                            | n.a.                  |                                                                       |                                                     |                 |
| ≥st (Höglwald),               | Butterbach-Bahl et al.<br>2002<br>Rosenkranz et al 2010<br>Wu et al. 2010<br>Kreutzer et al 2010<br>Matejek et al 2008 | Cambisol, N-saturation; atmospheric N<br>deposition of 30 kg N ha <sup>-1</sup> yr <sup>-1</sup>                                                                                                 | 403-487<br>(organic<br>layer+miner<br>al topsoil) | 8                                                      | He/O <sub>2</sub>                                                                       | 1.2 (0.09)                    | 7 (0.7)                      | 7.4                                           | 1.4-1.7               |                                                                       |                                                     |                 |
| st (Höglwald),                | Butterbach-Bahl et al<br>2002                                                                                          | Cambisol, N-saturation; atmospheric N<br>deposition of 20 kg N ha <sup>-1</sup> yr <sup>-1</sup>                                                                                                 | n.a.                                              | n.a.                                                   | He/O <sub>2</sub>                                                                       | 1.6-6.6                       | 12.4 (3.1)                   | 1.9                                           | n.a.                  |                                                                       |                                                     | 2               |
| st, Germany                   | Dannenmann et al.<br>2008<br>Dannenmann et al.                                                                         | Leptosol, atmospheric N deposition <10kg N<br>ha <sup>-1</sup> yr <sup>-1</sup> , pH 6.2-7.2 ca. 8-11% SOC                                                                                       | 69-105<br>(0-10cm<br>topsoil)                     | 15-20 (0-<br>10cm<br>topsoil)                          | He/O <sub>2</sub>                                                                       | 0.05-0.22                     | 1.8 - 6                      | 27-112<br>mean 67                             | 2.6-5.7               | -                                                                     |                                                     |                 |
| st, Germany                   | Dannenmann et al.<br>2006<br>Dannenmann et al.                                                                         | Leptosol, atmospheric N deposition <10kg N<br>ha <sup>-1</sup> yr <sup>-1</sup> , pH 6.2-7.2; ca. 8-11% SOC, after<br>reduction of basal area of trees by 70%                                    | 249<br>(0-10cm<br>topsoil)                        | 21-42 (0-10<br>cm topsoil)                             | He/O <sub>2</sub>                                                                       | 0.85                          | 30.7                         | 36                                            | 12.3                  | -                                                                     |                                                     |                 |
| inforest, Australia<br>Ker)   | 2008<br>Kiese et al. 2008<br>Kiese et al. unpublished<br>(N <sub>2</sub> )<br>Kiese et al. 2003 N <sub>2</sub> O       | Tropical rainforest<br>pH 4.1, Oxisol                                                                                                                                                            | 0-5 cm<br>559                                     | n.a.                                                   | He/O <sub>2</sub>                                                                       | 0.96                          | 2.0-4.7                      | 2.0-4.7                                       | 0.3-0.8               |                                                                       |                                                     |                 |
| plantation                    | Uri et al 2011                                                                                                         | N fixation of 150 kg N ha-1 yr-1                                                                                                                                                                 | n.a.                                              | 124                                                    | He/O2                                                                                   | 0.5                           | 73.8                         | 47-261<br>mean 171                            | n.a.                  | 0.207<br>±0.079                                                       | 0.492<br>±0.066                                     | ]               |
| I soil (California)           | Rolston et al (1978)                                                                                                   | Yolo loam soil, ryegrass; 300 kg N ha <sup>-1</sup> K <sup>15</sup> NO <sub>3</sub><br>addition, different soil water content                                                                    | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux                                                             | 0.1-1.8                       | 1. 9-24                      | 5-25                                          | n.a.                  |                                                                       |                                                     |                 |
| soil California               | Rolston et al (1978)                                                                                                   | Yolo loam soil, Manured; 300 kg N ha <sup>-1</sup><br>K <sup>15</sup> NO <sub>3</sub> addition, different soil water content                                                                     | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux                                                             | 3.8-9.9                       | 26-198                       | 8-20                                          | n.a.                  |                                                                       |                                                     |                 |
| soil California               | Rolston et al (1978)                                                                                                   | Yolo loam soil, uncropped; 300 kg N ha <sup>-1</sup><br>K <sup>15</sup> NO₃ addition                                                                                                             | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux                                                             | 0.2-2.1                       | 0-5.7                        | 1-7                                           | n.a.                  | 1                                                                     |                                                     |                 |
| soil California               | Rolston et al (1982)                                                                                                   | straw addition; 300 kg N ha <sup>-1</sup> KNO <sub>3</sub> addition                                                                                                                              | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux                                                             | 0.8-1.8                       | 4-17.6                       | 5-25                                          | n.a.                  |                                                                       |                                                     |                 |
| il soil<br>'UK                | Colbourn et al. 1984                                                                                                   | Winter wheat; Fertilized<br>53 kg NH₄NO₃ ha <sup>-1</sup>                                                                                                                                        | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux                                                             | 2.3±0.4                       | 28.5                         | 12                                            | n.a.                  |                                                                       |                                                     |                 |
| l soil (USA)                  | Mosier et al 1986                                                                                                      | Corn; fertilization with 200 kg <sup>15</sup> NH <sub>4</sub> *-N ha <sup>-1</sup><br>120 days monitoring                                                                                        | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux,<br><sup>15</sup> NH <sub>4</sub> <sup>+</sup><br>labelling | 3                             | <1.5                         | 0.8                                           | n.a.                  | -                                                                     |                                                     | nU              |
| ıl soil (USA)                 | Mosier et al. 1986                                                                                                     | Fertilization with 200 kg <sup>15</sup> NH <sub>4</sub> <sup>+</sup> N ha <sup>-1</sup><br>100 days monitoring                                                                                   | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux,<br><sup>15</sup> NH <sub>4</sub> <sup>+</sup><br>labelling | 0.8                           | <0.7                         | 6                                             | n.a.                  |                                                                       |                                                     | mmanon          |
| otton field                   | Scheer et al. 2009                                                                                                     | fertilization with 250 kg mineral N ha $^{\text{-1}}\text{yr}^{\text{-1}}$                                                                                                                       | n.a.                                              | n.a.                                                   | He/O2                                                                                   | 0.9-6.5                       | 24-175                       | 5-55<br>mean 27                               | n.a.                  | 0.150                                                                 | 0.375                                               |                 |
|                               | Lindau and Delaune                                                                                                     | 33 days period investigated,                                                                                                                                                                     | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas                                                                     | 2                             | 16                           | 3-250<br>Mean 72                              | n.a.                  | 20.001                                                                | 20.000                                              |                 |
| alain forest                  | Delaune et al. 1998                                                                                                    | 100-300 kg N ha <sup>-1</sup> yr <sup>-1</sup> fertilization plus<br>experimental addition of 100 kg <sup>15</sup> NH <sub>4</sub> <sup>+</sup> or<br><sup>15</sup> NO <sub>3</sub> <sup>-</sup> | 87.6                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux                                                             | 3.4-5.4<br>year <sup>-1</sup> | 97-298<br>year <sup>-1</sup> | 42                                            | 111-340               | -                                                                     |                                                     | n               |
| eshwater marsh<br>iver        | Yu et al 2006                                                                                                          | Annual estimates of N <sub>2</sub> and N <sub>2</sub> O provided,<br>38 kg <sup>15</sup> NO <sub>3</sub> N ha <sup>-1</sup> addition                                                             | n.a.                                              | n.a.                                                   | <sup>15</sup> N gas<br>flux                                                             | 2 yr <sup>-1</sup>            | 145 yr <sup>-1</sup>         | 66                                            | n.a.                  | 1                                                                     |                                                     |                 |
| tland Canada                  | Wray and Bayley 2007                                                                                                   | floating and non-floating conditions                                                                                                                                                             | n.a.                                              | n.a.                                                   | He/O <sub>2</sub>                                                                       | -0.3 to 0.2                   | 240                          | 196 (at<br>positive<br>N <sub>2</sub> O flux) | n.a.                  |                                                                       |                                                     |                 |
| d wetland for<br>r treatment, | Mander et al 2008                                                                                                      | monthly measurements for 1.7 years                                                                                                                                                               | n.a.                                              | n.a.                                                   | He/O <sub>2</sub>                                                                       | 0.37-0.6                      | 15-23                        | 25-61                                         | n.a.                  |                                                                       |                                                     |                 |
|                               |                                                                                                                        |                                                                                                                                                                                                  |                                                   |                                                        |                                                                                         |                               |                              |                                               |                       |                                                                       |                                                     |                 |
Nitroger (2) Tech (3) Environmental c (4) Shortcomings measurements techniques

#### Enigma of denitrification at various scales On the fate of anthropogenic nitrogen





(1) Nitroger (2) Tech (3) Environmental c (4) Shortcomings measurements techniques

# Enigma of denitrification at various scales

William H. Schlesinger<sup>1</sup>

Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545

PNAS | January 6, 2009 | vol. 106 | no. 1 | 203-208

#### Table 3. Budgets for nitrogen on the global land surface (To)

|                                       | (-9)           |                  | (-3/  |
|---------------------------------------|----------------|------------------|-------|
|                                       | Pre-industrial | Human<br>derived | Total |
| nputs                                 |                |                  |       |
| Biological nitrogen fixation          | 120            | 201              | 140   |
| Lightning                             | 5              | 0                | 5     |
| Industrial N-fixation                 | 0              | 125*             | 125   |
| Fossil fuel combustion                | 0              | 25               | 25    |
| otals                                 | 125            | 170              | 295   |
| ates                                  |                |                  |       |
| Biospheric Increment                  | Ø              | 9                | Ŀ     |
| Riverflow                             | 27             | 35               | 62    |
| Groundwater                           | 0              | 15               | 15    |
| Denitrification                       | 92*            | 11               | 109   |
| Atmospheric transport to the<br>ocean | 6              | 48               | 54    |
| otals                                 | 125            | 124              | 249   |

Butterbach-Bahl et al., 2013, Phil. Trans. Roy. Soc.

Institute for Meteorology and Climate Research, Atmosphere-Biosphere Interactions and Global Change, Biogeochemical Processes



LIVESTOCK RESEARCH

INSTITUTE

#### (1) Nitroger (2) Tech (3) Environmental c (4) Shortcomings measurements techniques



Atmosphere-Biosphere Interactions and Global Change, Biogeochemical Processes Nitroger (2) Tech (3) Environmental c (4) Shortcomings measurements techniques



Atmosphere-Biosphere Interactions and Global Change, **Biogeochemical Processes**  (1) Nitroger (2) Tech (3) Environmental c (4) Shortcomings measurements techniques

Tracing N (&N<sub>2</sub>O?) at landscape scales (Bedard-Haughn et al., 2003)



+80

arch,

(1) Nitroger (2) Tech (3) Environmental c (4) Shortcomings measurements techniques

#### Tracing N ( $\&N_2O$ ?) at landscape scales







#### **Conclusions**



LIVESTOCK RESEARCH

- Difficulties to identify source processes of soil N<sub>2</sub>O fluxes
- o Methodological problems with denitrification still unsolved
- Molecular biology tools may help to disentangle source and sink processes and importance of microbial diversity for flux regulation
- Scale issue hardly addressed by measurements
- Landscape scale modeling needed

(6) Conclusions

## Karlsruhe Institute of Technology

#### Biological nitrification inhibition by plants

(Subbarao et al. 2009 Breeding Sci. & Subbarao et al. 2009 PNAS)



(6) Conclusions



#### Biological nitrification inhibition by plants

(Subbarao et al. 2009 Breeding Sci. & Subbarao et al. 2009 PNAS)





## **Introductory lecture**

#### State of the art of nitrous oxide emission models

#### Pete Smith

# University of Aberdeen & Scottish Food Security Alliance-Crops, UK

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:<br/>do we have what is needed to explore mitigation options?"



#### Many models simulate GHG emissions





17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:<br/>do we have what is needed to explore mitigation options?"



#### All N<sub>2</sub>O emissions models are trying to do the same thing



17-19 March 2014 PARIS

Workshop "Experimental databases and model of N2O emissions by croplands: do we have what is needed to explore mitigation options?" After Wollast (4981)



# Different types of model for simulating GHG emissions



Blagodatsky & Smith (2012)

17-19 March 2014 PARIS

Workshop "Experimental databases and model of N2O emissions by croplands: do we have what is needed to explore mitigation options?"



## Relative gas diffusivity differs



Fig. 3. Relative gas diffusivity  $D_p/D_0$  as a function of air-filled porosity. The following dependencies are plotted;  $\varepsilon^2$ , (Buckingham, 1904); 0.66 $\varepsilon$ , (Penman, 1940); Eq. (3), (Millington and Quirk, 1961); Eq. (2), (Troeh et al., 1982);  $0.9\varepsilon^{2.3}$  (Campbell, 1985); Eq. (4), (Moldrup et al., 2000a); Eq. (8), (Kristensen et al., 2010).

#### Blagodatsky & Smith (2012)

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:<br/>do we have what is needed to explore mitigation options?"



#### Necessary model features or driving variables



17-19 March 2014 PARIS Workshop "Experimental databases and model of N2O emissions by croplands: do we have what is needed to explore mitigation options?"



## Lots of models out there...

#### Table 2

Models combining transport and biological processes leading to the emission of greenhouse gases. Number of asterisks (1-3) shows the level of detail in description of the physical and biological processes.

| Model, reference                                                      | Simulated gases                                                                           | Soil physics description                                                                                                                       | Soil biology (C and N turnover) description                                                                                                                                                  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uuyang and Boersma, 1992a, b                                          | 0 <sub>2+</sub> C0 <sub>2</sub>                                                           | *** water, heat and gas transport.<br>gaseous solubility in water and                                                                          | ** toot respiration, heberotrophic nucrobial<br>growth (double Mono kinetics) and maintenance                                                                                                |
| ECOSVS. Grant et al., 1993a, b. r<br>and other works                  | 02 CO2 N20 CH                                                                             | adsorption on solid phase<br>*** transport within and transfer<br>between aqueous and gaseous phases,                                          | Mono kinetics), autotrophic mitrification.                                                                                                                                                   |
| Arali and Stephen, 1998                                               | O <sub>2</sub> , CH <sub>4</sub>                                                          | *** vertical gaseous diffusion and convection<br>*** vertical gaseous diffusion in air and<br>water and plant-mediated gas transport           | de unritication, methane production and exication<br>** dual substrate Michaelis – Menten kinetics<br>for CH <sub>4</sub> exidation and CH <sub>4</sub> production with<br>usages inhibition |
| PATCIS, Fang and Monoreff, 1998);<br>Hui and Luo, 2004                | £03                                                                                       | *** inter- and intra-aggregate gaseous<br>diffusion, gaseous convection, gaseous<br>solubility and dispersion with water                       | * first-order two-pools decomposition with<br>temperature, moisture and oxygen scaling factors                                                                                               |
| DNDC-family, e.g. D, 2000;<br>Li et al., 2000, de Bruijs et al., 2009 | O <sub>5</sub> , CO <sub>2</sub> , NO, N <sub>2</sub> O, N <sub>2</sub> , CH <sub>4</sub> | ** water transport, vertical gaseous<br>diffusion, anaemblic balloon concept                                                                   | ** multi-pool decomposition model with explicit<br>description of denitrification                                                                                                            |
| Walter and Heimann, 2000                                              | CH4                                                                                       | ** gaseous transport as diffusion,<br>shullifion and plant-mediated<br>ris transport                                                           | ** substrate dependent CH <sub>4</sub> production and<br>Michaelis- Menten kinetics for CH <sub>4</sub> oxidation<br>senarized by water table                                                |
| DAYCENT, Del Grosso et al., 2000;<br>Parton et al., 2001;             | $CD_2, NO, N_2O, CH_{\mathbf{g}}$                                                         | * soil diffusivity affects final ratio<br>of NO/N <sub>2</sub> O and CH <sub>4</sub> , no explicit                                             | ** first-order multi-pool decomposition model,<br>no explicit modelling of microbial growth                                                                                                  |
| PASIM, Schmid et al., 2001<br>Yuichard et al., 2007                   | 60 <sub>2</sub> , N <sub>2</sub> O                                                        | * resistance model for N <sub>2</sub> O diffusion<br>in root-layer, N <sub>2</sub> O transfer between<br>gascous and liquid phases and between | ** nitrification and dentitrification process<br>description, no explicit microbial growth                                                                                                   |
| Segers and Leffelaur, 2001a, b                                        | $O_{2},CH_{de}CO_{2},N_{2}$                                                               | anarotic production zone and soil poist<br>"I" gaseous transport as diffusion,<br>ebuiltion and plant-mediated<br>cas transport                | *** full kinetic description of CH <sub>4</sub> production<br>and oxidation and other electron acceptor<br>reduction/oxidation                                                               |
| COLP, Jansson and Moon, 2001<br>Norman et al., 2008                   | 0 <sub>2</sub> , CO <sub>2</sub> , NO, N <sub>2</sub> O, N <sub>2</sub>                   | ** water, heat and gas transport (Fickian<br>diffusion), anaerobic balloon concept                                                             | ** multi-pool decomposition model with explicit<br>description of microbial biomass dynamics<br>and denutification                                                                           |
| Langevekl and teffelaar, 2002                                         | 02, CO2 N20                                                                               | *** vertical gaseous diffusion, local<br>anaerobiodity with randomity/regularly<br>distributed page model                                      | ** growth of denitrifiers and strict aeroby,<br>double Mono kinetics                                                                                                                         |
| EXPERT-N, Kaharabata et al., 2003;<br>Klier et al., 2011              | N20                                                                                       | ** gaseous diffusion/dispersion in air<br>and liquid phase                                                                                     | */** multiple options for multi-pool decomposition models no explicit mercial erouth destruction                                                                                             |
| Kettimen, 2003                                                        | Ö <sub>2</sub> , СИ <sub>4</sub>                                                          | <ul> <li>vertical gaseous diffusion and<br/>plant-mediated gas transport</li> </ul>                                                            | ** Explicit dynamics of methanotrophs<br>and methanogenes with double Mono kinetics<br>(O - and CH-)                                                                                         |
| De Visscher and Van Geemput, 2003                                     | $O_{2^{\ast}}CH_{a},CO_{2^{\ast}}N_{2}$                                                   | *** multiple gas transport by dusty gas model                                                                                                  | *** growth of methanotrophs and CH <sub>4</sub><br>production with dual substrate Mono kinetics                                                                                              |
| lassal et al., 2004                                                   | £0 <sub>2</sub>                                                                           | *** water and heat transport gaseous<br>diffusion, convection, gaseous solubility<br>and discontion with easter                                | <ul> <li>first-order two-pools decomposition<br/>with temperature, moisture and<br/>occurrents of line factors</li> </ul>                                                                    |
| PASTIS - CANTIS, Cannavo et al., 2006;                                | $O_{2s},CO_{2s},N_{2}O,N_{2}$                                                             | *** water, heat and gas transport by                                                                                                           | <ul> <li>first-order, or one and half order kinetics,</li> <li>SOM mode and 2 biometer people</li> </ul>                                                                                     |
| Xu et al⊋ 2007                                                        | 0 <sub>2</sub> , 04,                                                                      | ** gaseous transport with diffusion,<br>ebuiltion and plant-mediated<br>gas transport                                                          | *** identic description of CH <sub>4</sub> production<br>and oxidation and explicit description of<br>afternative electron acceptors reduction;                                              |
| Herbst et al., 2008                                                   | CO2                                                                                       | *** 50/LCO2 model: water, heat and                                                                                                             | RothC model, four pools with                                                                                                                                                                 |
| TOUGHREACT-N Maggi et al. 2008;<br>Gu et al. 2009                     | 02, CO2, N2O, NO, NH3                                                                     | gas transport<br><sup>ect</sup> vertical water flow (Darcy-Richards<br>equation), Fickian diffusion in gas<br>and liquid phases                | hist-order decay rates<br>*** microbial growth (Mono kinet)cs)<br>and subtrate transformations according<br>second order (subtrate * biomass) kinetics,                                      |
| Tang et al., 2010                                                     | $O_3, CH_3, CO_2, N_3,\\$                                                                 | *** gaseous transport with diffusion,<br>prant-mediated transport and.                                                                         | *** two substances model (O2 and CH3)<br>for methane production (competition with                                                                                                            |
| ANIMO, Stoik et al., 2011a, b                                         | CO2 N2O, CH4                                                                              | Pressure-based epultion<br>** effective diffusion in water and<br>air, mobile - immobile concept for<br>N <sub>2</sub> O emission              | across: c consumption) and oxidation<br>* first-order multiple pools decomposition,<br>no explicit microbial growth                                                                          |

21 models in this table of models including soil biology and soil physics

Blagodatsky & Smith (2012)

17-19 March 2014 PARIS

Workshop "Experimental databases and model of N2O emissions by croplands: do we have what is needed to explore mitigation options?"



## Models differ in complexity

- Some models are very detailed and mechanistic short time-step and require lots of input data
- But scratch below the surface of any model and you find empirical relationships!
- Some models are simpler longer time-step require less input data more empirical relationships
- Differ in ways e.g. temperature/energy transfer, diffusion, anaerobicity, O<sub>2</sub> availability, REDOX are dealt with

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:<br/>do we have what is needed to explore mitigation options?"



Examples from 3 commonly used biogeochemical models

- ECOSSE
- DailyDayCent
- DNDC

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:<br/>do we have what is needed to explore mitigation options?"



## N routines in ECOSSE



17-19 March 2014 PARIS Workshop "Experimental databases and model of N2O emissions by croplands: do we have what is needed to explore mitigation options?"



## ECOSSE

- Soil temperature = air temperature
- Daily to monthly time-step version
- Anaerobic processes determined by water table depth / soil moisture (tipping bucket)
- O<sub>2</sub> availability implicit (water table)
- Diffusion rate fixed by soil type
- pH considered but REDOX potential not explicit

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands: do we have whatPARISis needed to explore mitigation options?"





Bell et al. (2011)



Bell *et al.* (2011)















J.U. Smith et al. (2003)



# Multiple season / multiple crop. As with all models, it doesn't always get it right!! See Sugar beat N uptake

Krummbach Loam (N4 normal fert) W. Wheat - Sugar beet - W. Wheat - W. Wheat Crop N uptake



Smith *et al.* (2001)











- Soil temperature derived from air temperature
- Daily time-step version
- Anaerobic processes determined by soil moisture
- O<sub>2</sub> availability implicit?
- Diffusion rate simulated
- pH considered but REDOX potential not explicit

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands: do we have whatPARISis needed to explore mitigation options?"















#### The DNDC Model





# DNDC

- Soil temperature and energy transfer modelled
- Daily time-step version some processes at sub-daily time-step (diurnal curve)
- Anaerobic processes modelled explicitly using "anaerobic balloon"
- O<sub>2</sub> availability explicitly modelled
- Diffusion rate simulated explicitly
- REDOX potential explicit (simulated by "anaerobic balloon") 17-19 March 2014 PARIS Workshop "Experimental databases and model of N2O emissions by croplands: do we have what is needed to explore mitigation options?"



#### Model vs data: Mobile-DNDC, Gebesee, arable 2006-08





#### Model vs data: Mobile-DNDC, Oensingen, grassland 2001-07




#### Model vs data: Mobile-DNDC, Paulinenaue, arable 2007-09





#### Observed and DNDC-Modeled N2O Fluxes from Agricultural Soils in the U.S., Canada, the U.K., Germany, New Zealand, China, Japan, and Costa Rica



Observed N2O flux, kg N/ha/year



# Conclusions

- Models differ greatly in complexity and process detail
- There is no right or wrong way to model N<sub>2</sub>O "horses for courses"
- Simple models require fewer inputs, but compromise on process-description
- Complex models are not necessarily more accurate particularly if they cannot be parameterised
- We still have a lot to learn about modelling N<sub>2</sub>O emissions
- Getting it wrong ultimately improves our understanding we should not fear model failure

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:<br/>do we have what is needed to explore mitigation options?"



Sian Uti / Loc

LEARN MORE

# **GRA Modelling Platform (GRAMP)**



Home

Real Property in the

#### Learn about DNDC.

About Library Models Community

The DeNitrification-DeComposition model (DNDC) simulates carbon and nitrogen biogeochemistry in ecosystems. DNDC is well calibrated for predicting plant growth and greenhouse gas emissions.

#### Global Research Alliance Modeling Platform

Welcome to the Global Research Allance Modeling Platform (GRAMP), GRAMP provides a place where you can share information about DNDC and connect with other researchers working on biogeochemical modeling of acosystems. The DNDC model family is constantly growing and evolving: through GRAMP your research and lideas can improve DNDC and its predictions of soil carbon and nitrogen cycling in the context of climate change.

TRAINING



PURIDICATIONS

|   | 1 |   |  |
|---|---|---|--|
| 1 |   | 1 |  |

**ONLINE RESOURCES** 





FIELD DATA



MODEL REPOSITORIES

Not already a member? Access the latest DNDC documentation and models.

JOIN NOW >

DOWNLOAD 4

Around the Community Active Topics **GRAMP** News

17-19 March 2014 PARIS

Workshop "Experimental databases and model of N2O emissions by croplands: do we have what is needed to explore mitigation options?"



### **Introductory lecture**

#### N2O Flux from Measurement to Databases: Navigating the Maze

Mark Liebig and Pierre Cellier USDA Agricultural Research Service, Mandan, ND - USA INRA Unité Mixte de Recherche Environnement et Grandes Cultures, 78850 Thiverval-Grignon - France

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:<br/>do we have what is needed to explore mitigation options?"







# N<sub>2</sub>O emissions and Agriculture

- A convergence of contributing factors...
  - Environmental impacts of N loss (Davidson et al. 2012)
  - Global N use for agricultural production increasing (Conant et al., 2013)
  - Across sectors, agriculture accounts for the majority of N<sub>2</sub>O emissions (IPCC, 2007)









# What is required to provide high quality N<sub>2</sub>O flux data?

Measurement Table: Greenhouse Gas Flux

**Experimental Unit and Treatment Information** 

Please enter methods for all your measurements on the Methods page.

**Greenhouse Gas Flux Data** 



| Ű    |            | mm/dd/yyyy |      |             |           |              | g N/ha/day | field measurement, or<br>enter the number 0 if<br>data is interpolated. |
|------|------------|------------|------|-------------|-----------|--------------|------------|-------------------------------------------------------------------------|
| 2    |            |            |      |             |           | Chamber_Plac |            |                                                                         |
|      | Exp_UnitID | Date       | Time | TreatmentID | Crop      | ement        | $N_2O$     | N <sub>2</sub> O_Interp_Obs                                             |
|      | FCW        | 10/21/2003 |      | FCW         | Rangeland | Rangeland    | 11.85      | 1                                                                       |
|      | FCW        | 10/28/2003 |      | FCW         | Rangeland | Rangeland    | 4.20       | 1                                                                       |
| 1    | FCW        | 11/18/2003 |      | FCW         | Rangeland | Rangeland    | 3.85       | 1                                                                       |
|      | FCW        | 12/2/2003  |      | FCW         | Rangeland | Rangeland    | 8.22       | 1                                                                       |
|      | FCW        | 12/16/2003 |      | FCW         | Rangeland | Rangeland    | 8.05       | 1                                                                       |
| 2.12 | FCW        | 12/30/2003 |      | FCW         | Rangeland | Rangeland    | 24.73      | 1                                                                       |
|      | FCW        | 1/13/2004  |      | FCW         | Rangeland | Rangeland    | 30.09      | 1                                                                       |
|      | FCW        | 1/28/2004  |      | FCW         | Rangeland | Rangeland    | 2.94       | 1                                                                       |
|      | FCW        | 2/10/2004  |      | FCW         | Rangeland | Rangeland    | 18.38      | 1                                                                       |
|      | FCW        | 2/20/2004  |      | FCW         | Rangeland | Rangeland    | 8.40       | 1                                                                       |
|      | FCW        | 2/27/2004  |      | FCW         | Rangeland | Rangeland    | 3.71       | 1                                                                       |
|      | FCW        | 3/9/2004   |      | FCW         | Rangeland | Rangeland    | 4.79       | 1                                                                       |
|      | FCW        | 3/22/2004  |      | FCW         | Rangeland | Rangeland    | 24.11      | 1                                                                       |
|      | FCW        | 3/30/2004  |      | FCW         | Rangeland | Rangeland    | 10.84      | 1                                                                       |
|      | FCW        | 4/5/2004   |      | FCW         | Rangeland | Rangeland    | 10.85      | 1                                                                       |
|      | FCW        | 4/13/2004  |      | FCW         | Rangeland | Rangeland    | 5.29       | 1                                                                       |
|      | FCW        | 4/16/2004  |      | FCW         | Rangeland | Rangeland    | 8.18       | 1                                                                       |
|      | FCW        | 4/20/2004  |      | FCW         | Rangeland | Rangeland    | 12.02      | 1                                                                       |
|      | FCW        | 4/22/2004  |      | FCW         | Rangeland | Rangeland    | 8.38       | 1                                                                       |
|      | FCW        | 4/27/2004  |      | FCW         | Rangeland | Rangeland    | 4.22       | 1                                                                       |
|      | FCW        | 5/4/2004   |      | FCW         | Rangeland | Rangeland    | 8.22       | 1                                                                       |
|      | FCW        | 5/10/2004  |      | FCW         | Rangeland | Rangeland    | 7.19       | 1                                                                       |
|      | FCW        | 5/14/2004  |      | FCW         | Rangeland | Rangeland    | 6.52       | 1                                                                       |
| e    | FCW        | 5/18/2004  |      | FCW         | Rangeland | Rangeland    | 3.85       | 1                                                                       |



Required! Enter the number 1 if preceding

data is from an actual

Agricultural Research Service

United States Department of Agriculture

USDA



# Within constraints of money, time, and expertise, we follow...

- A tortuous path...
- with multiple decision points...

#### many with significant tradeoffs.

- Spatial representation
- Temporal coverage
- Treatment numbers
- Treatments type
- Magnitude of N<sub>2</sub>O flux

### **Measurement Techniques**

- Chamber Methods
  - Small scale (1 m<sup>2</sup>)
  - Manual and automated
  - Most common technique (Denmead, 2008)
- Micrometeorological Methods
  - Large scale (1000+ m<sup>2</sup>)
  - Highly automated
  - Emerging use (Nicolini et al., 2013)













## **Chamber Methods: Manual**

| Benefits                                                 | Drawbacks                                                                     |
|----------------------------------------------------------|-------------------------------------------------------------------------------|
| Simple in concept and operation                          | Chamber/Frame interference<br>with crop/environment                           |
| Low material costs, no power                             | High labor cost, manual sampling                                              |
| Portable, thereby allowing assessment of many treatments | Low temporal sampling<br>frequency                                            |
| High sensitivity                                         | Increase in gas concentration<br>within headspace may affect<br>emission rate |
| Do not require large<br>experimental areas               | Small assessment area + High<br>spatial variability = 个CVs                    |

(Clough et al., 2012; Rochette et al., 2012; Denmead, 2008)



## **Chamber Methods: Automated**

| Benefits                                   | Drawbacks                                                  |
|--------------------------------------------|------------------------------------------------------------|
| Still simple in concept                    | but not so simple in operation                             |
| Immediate analysis, Lower labor cost       | Moderately high material<br>costs, power required          |
| High temporal sampling<br>frequency        | 'Less' portable, limiting<br>number of treatments          |
| High sensitivity                           | Animal 'interference' a<br>potential problem               |
| Do not require large<br>experimental areas | Small assessment area + High<br>spatial variability = 个CVs |

(Grace et al, 2012; Denmead, 2008)

# **Micrometeorological Methods**

#### • Flux gradient

 Fluxes a product of an eddy diffusivity and the vertical concentration of gas (two measurement heights).

#### • Eddy covariance

 Direct measurements of the vertical transport of gas; fluxes estimated by the covariance of concentration and wind speed.









# **Micrometeorological Methods**

| Benefits                                                        | Drawbacks                                              |
|-----------------------------------------------------------------|--------------------------------------------------------|
| Large spatial footprint                                         | Limited treatments                                     |
| Continuous measurement,<br>High temporal resolution             | Data gaps common                                       |
| Fast response, high precision<br>analyzers (FTIR, TDLAS, QCLAS) | High material costs,<br>Specialized labor requirements |
| Rigorous, Computationally intensive                             | Many corrections/assumptions necessary                 |

#### Data Analysis Considerations Chamber Methods

• Presently, there is no ideal choice for calculation of 'best' flux across applications

(Venterea et al., 2012; Venterea, 2013)

- Linear regression; Quadratic regression
- Non-steady state diffusive flux estimator method; Hutchinson-Mosier (HM) method; Modified HM method; Chamber bias correction method

#### Tradeoff between bias and variance

(Parkin and Venterea, 2010)

USDA

United States Department of Agriculture

- Magnitude of flux
- Data curvi-linearity
- Analytical precision

"There is no simple answer"



| Approach                                               | Advantages                                                                                                                      | Disadvantages                                                                                    | Recommendations                                                                         |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Linear regression<br>(LR)                              | Least sensitive to meas.<br>error; Simple                                                                                       | No basis in diffusion theory                                                                     | ≥3 sampling points, and convex-upward data                                              |
| Quadratic<br>regression (QR)                           | Less bias than LR for convex-downward data                                                                                      | No basis in diffusion theory                                                                     | ≥4 sampling points                                                                      |
| Hutchinson and<br>Mosier (HM)                          | Based on quasi-steady<br>state diffusion theory;<br>Least-biased for convex-<br>downward data                                   | Restricted to 3 equally-<br>spaced time points;<br>More sensitive to meas.<br>error than LR & QR | Not recommended                                                                         |
| Non-steady state<br>diffusive flux<br>estimator (NDFE) | Based on non-steady<br>state, one-dimensional<br>diffusion theory                                                               | Highly sensitive to<br>violation of underlying<br>assumptions                                    | ≥4 sampling points                                                                      |
| Modified HM<br>method (HMR)                            | Based on diffusion<br>theory, considers lateral<br>gas transport; Available<br>as software package                              | More sensitive to<br>random measurement<br>error than LR & QR (at<br>lower flux values)          | ≥4 sampling points                                                                      |
| Chamber bias<br>correction<br>method (CBC)             | Delivers single flux<br>value; Less sensitive to<br>violation of<br>assumptions than<br>NDFE; Can be combined<br>with LR or QR. | Requires additional soil<br>data; Requires multiple<br>calculations                              | ≥3 sampling points with<br>LR; ≥4 sampling points<br>with QR<br>(Venterea et al., 2012) |

### **Data Reporting**







# **Data Reporting**

**General Requirements for Process-based Models** 

- Detailed description of site/management history
- Thorough baseline characterization of soil properties
- Daily time-step of relevant weather variables
- Soil moisture content and available N for each sampling date
- Biomass production; Components of yield





GRA - Soil C-N cross-cutting group, AgMIP - Grasslands and Livestock group

& Associated projects on modeling agricultural GHG emissions

Site registration Spreadsheet for Model Intercomparison & Benchmarking





#### Soil initial conditions

Please describe for each layer

Optionnal data are pasted in blue

| Soil | type |
|------|------|
|------|------|

or

Reference name (WRB, FAO) :

NGPRL Historical Grazing Trial, Mandan, ND USA

Short description :

2003 soil sampling

Maximum soil depth (mm) (eg 1000) : 3000-5000

Rooting depth (mm) : 1800

Description of the layers

|                                                           |      | Мо   | derately | grazed pa | sture |      |      | ŀ    | leavily gra | azed past | ure  |      |      | Cre  | sted whe | atgrass pa | asture |      |
|-----------------------------------------------------------|------|------|----------|-----------|-------|------|------|------|-------------|-----------|------|------|------|------|----------|------------|--------|------|
| Layer depth (mm) (bottom limit)                           | 50   | 100  | 200      | 300       | 600   | 1000 | 50   | 100  | 200         | 300       | 600  | 1000 | 50   | 100  | 200      | 300        | 600    | 1000 |
| Sand (%)                                                  | 30.8 | 27.5 | 27.0     | 27.8      | 30.0  | 35.0 | 29.5 | 26.8 | 26.5        | 27.3      | 30.0 | 32.3 | 32.3 | 28.0 | 29.3     | 29.3       | 33.8   | 37.0 |
| Silt (%)                                                  | 54.5 | 52.8 | 53.8     | 51.0      | 46.3  | 47.3 | 56.0 | 53.3 | 56.5        | 52.0      | 46.5 | 45.0 | 50.5 | 51.0 | 51.8     | 50.5       | 42.0   | 31.5 |
| Clay (%)                                                  | 14.8 | 19.8 | 19.3     | 21.3      | 23.8  | 17.8 | 14.5 | 20.0 | 17.0        | 20.8      | 23.5 | 22.8 | 17.3 | 21.0 | 19.0     | 20.3       | 24.3   | 31.5 |
| Bulk soil density (t soil m <sup>-3</sup> )               | 0.87 | 1.20 | 1.09     | 1.18      | 1.26  | 1.40 | 0.92 | 1.14 | 1.12        | 1.17      | 1.32 | 1.43 | 1.02 | 1.34 | 1.23     | 1.28       | 1.28   | 1.44 |
| Saturated water content (m <sup>3</sup> m <sup>-3</sup> ) | 0.67 | 0.55 | 0.59     | 0.55      | 0.52  | 0.47 | 0.65 | 0.57 | 0.58        | 0.56      | 0.50 | 0.46 | 0.62 | 0.49 | 0.54     | 0.52       | 0.52   | 0.46 |
| Field capacity (m <sup>3</sup> m <sup>-3</sup> )          | 0.42 | 0.39 | 0.40     | 0.39      | 0.38  | 0.33 | 0.42 | 0.40 | 0.40        | 0.39      | 0.37 | 0.34 | 0.40 | 0.37 | 0.38     | 0.37       | 0.37   | 0.35 |
| Permanent wilting point (m <sup>3</sup> m <sup>-3</sup> ) | 0.19 | 0.21 | 0.21     | 0.22      | 0.23  | 0.20 | 0.19 | 0.22 | 0.20        | 0.22      | 0.23 | 0.22 | 0.20 | 0.22 | 0.21     | 0.21       | 0.23   | 0.26 |
| Saturated hydraulic conductivity (mm/d)                   | 864  | 864  | 864      | 86.4      | 86.4  | 86.4 | 864  | 864  | 864         | 86.4      | 86.4 | 86.4 | 864  | 864  | 864      | 86.4       | 86.4   | 86.4 |
| Total organic C (kgC m <sup>-2</sup> )                    | 2.28 | 1.67 | 2.42     | 1.84      | 3.66  | 4.86 | 2.84 | 1.91 | 2.64        | 1.94      | 3.71 | 4.59 | 2.86 | 1.67 | 2.60     | 2.09       | 4.41   | 4.82 |
| Total organic N (kgN m <sup>-2</sup> )                    | 0.18 | 0.14 | 0.21     | 0.17      | 0.38  | 0.30 | 0.21 | 0.16 | 0.23        | 0.18      | 0.36 | 0.32 | 0.23 | 0.15 | 0.24     | 0.20       | 0.40   | 0.31 |
| Coarse organic matter fraction (%)                        | 13.8 | 5.6  | 4.0      | 4.7       |       |      | 12.4 | 6.6  | 4.4         | 4.3       |      |      | 39.1 | 9.7  | 6.3      | 6.5        |        |      |
| pH H2O (1:1 soil-water ratio)                             | 6.44 | 6.46 | 6.63     | 6.81      | 7.06  | 7.70 | 6.62 | 6.65 | 6.70        | 6.79      | 6.98 | 7.69 | 5.10 | 5.80 | 6.39     | 6.70       | 7.15   | 7.73 |
| Cation Exchange Capacity (cmol.kg <sup>-1</sup> )         | 17.3 | 16.7 | 18.2     | 18.8      | 21.3  | 31.6 | 18.2 | 18.0 | 19.3        | 19.3      | 22.7 | 32.9 | 10.4 | 16.8 | 18.6     | 19.9       | 24.3   | 34.0 |
| Extractable aluminium (ppm)                               |      |      |          |           |       |      |      |      |             |           |      |      |      |      |          |            | 92     |      |
| Extractable calcium (ppm)                                 | 2273 | 2220 | 2387     | 2372      | 2651  | 4194 | 2411 | 2388 | 2465        | 2342      | 2624 | 4258 | 1277 | 2236 | 2459     | 2538       | 3092   | 4098 |

# A range of experimental sites

#### AgMIP Sentinel Site Classification System

Full complement of variables

Platinum – Highest quality observed experiment data for model intercomparisons, evaluation, and improvement, with full complement of variables, including in-season and end-ofseason measurements

Most, but not all variables

Gold – Higher-quality observed data from agronomic experiments for model calibrations and intercomparisons, and evaluation, with a mid-range amount of variables, including in-season phenology and end-of-season data

Minimum set of variables

Silver – High-quality observed data from agronomic experiments for model calibrations and intercomparisons, and evaluation, with a minimum set of variables, with in-season phenology and end-of-season data

# N<sub>2</sub>O Flux Networks and Databases

# Establishing higher-level connections among experimental sites

- Complexity of the topic
- Long-term nature of research
- Benefits of standardization
- Systematic archival of data/samples
- Facilitates testing of theories by multiple researchers
- Transition to 'open access' data

(Brouder and Volenec, 2013; Baker and Follett, 2012)





| (after Baker and Follett, 2012)<br><b>Network</b> | Primary<br>location | Primary focus    | Currently<br>active? | Data<br>Available? |
|---------------------------------------------------|---------------------|------------------|----------------------|--------------------|
| N <sub>2</sub> O Network                          | Australia           | N <sub>2</sub> O | Y                    | Y                  |
| Fluxnet Canada                                    | Canada              | GHG & SOC        | N                    | Y                  |
| Green Crop Network                                | Canada              | GHG & SOC        | N                    | Ν                  |
| N2O-France                                        | France              | N <sub>2</sub> O | Y                    | Y                  |
| Agric. UK GHG Platform                            | UK                  | GHG              | Y                    | Pending            |
| GRACEnet                                          | USA                 | GHG & SOC        | Y                    | Y                  |
| Tragnet                                           | USA                 | GHG              | N                    | Y                  |
| GHG Europe                                        | Europe              | GHG              | N                    | Y                  |
| NitroEurope                                       | Europe              | N <sub>r</sub>   | N                    | Y                  |
| CarboEurope                                       | Europe              | GHG & SOC        | N                    | Y                  |
| CarboAfrica                                       | Africa              | GHG & SOC        | N                    | Y                  |
| IPCC EFDB                                         | Global              | GHG              | N                    | Y                  |
| Global Research Alliance                          | Global              | GHG & SOC        | Y                    | TBD                |

### Improving the Knowledge and Management of N<sub>2</sub>O Emissions by Field Crops (UMT GES-N2O)



- Established in 2008
- National research effort to improve the knowledge/management of N<sub>2</sub>O emissions by field crops.
- Two partners in Grignon
  - INRA (Two research units: Agronomy, Environment and Arable Crops),
  - CETIOM (French applied research institute for oilseed crops)
- More partners by the way of research projects
- Measurement, database, simulation tool efforts.
- Implementation of a tier-2 method

#### The N<sub>2</sub>O-France network

#### Datasets:

NO GAS project
Inra projects
other institutes
Full circle : updated datasets
Open circle: pending datasets

A range of conditions:

- Climate
- Soils
- Practices:
  - Fertilisation (min/org)
  - Soil tillage
- Legume crops Different treatments for each site





Presently > 250 data (one data = 1 site/1full year/1 treatment)



### Greenhouse Gas Reduction through Agricultural Carbon Enhancement Network (GRACEnet)

- Established 2002
  - USDA Agricultural Research Service
- Three-pronged objective:
  - Determine management effects on SOC and GHG fluxes
  - Provide land managers with strategies to help mitigate GHG emissions, improve soil quality, and adapt to climate change
  - Provide policy- and decision-makers timely and relevant information
- Resource for numerous synthesis publications; Contributed to Livestock GRACEnet; Centralized data portal.

USDA

Inited States Department of Agriculture

Agricultural Research Service

#### **GRACEnet Data Portal**





#### http://nrrc.ars.usda.gov/arsdataportal

### National Agricultural Nitrous Oxide Emissions Research in Australia (N<sub>2</sub>O Network)

• Established 2005



- Collaboration among university, government, and industry (Queensland University of Technology, Australian Government Department of Agriculture, Grains Research & Development Corporation)
- National research network to develop and deliver effective and practical strategies for reducing N<sub>2</sub>O emissions while maintaining productivity.
- Resources/tools for growers, policy makers, and researchers.



The N<sub>2</sub>O Network is a collaborative research program established to study nitrous oxide (N<sub>2</sub>O) emissions from Australian agriculture soils



http://www.n2o.net.au/



#### The agriculture sector is the major source of nitrous oxide emissions in Australia. Researchers at the N/O Network are currently collecting measurements of N/O emissions from agriculture sens of



a number of sites around Australia

#### About the Network

Loading organisation, funding, and, participants' paper the projects



For Growers Entrances assesses to behalf provers





- Search Title, Abstract, Keywords, Personnel (Quicker)
- Search all fields (Slower)

Browse all available records

Rec

lord / username

#### Data catalogue mep



# **Closing Thoughts**

#### Each measurement technique has its niche...

- Manual chambers Small scale; Simple; Suitable where labor is abundant and resources limit use of more temporally intensive techniques
- Automated chambers Small scale; Temporally intensive; Moderately specialized labor requirements
- Micromet Large scale; Temporally intensive; Highly specialized labor requirements; Ideal for long-term monitoring





#### The critical issue of auxiliary data...

- Auxiliary implies a supporting role, yet these data are a requirement for model improvement.
- What criteria should we have for categorizing experimental sites? (e.g., What's Silver, Gold, and Platinum?)
- Can models use similar criteria groupings, or must these criteria be model-specific?





#### Networks and databases are like children...

"Conceiving new offspring is more exciting than tending to those already present. And yet, the latter activity generally produces more lasting rewards." John Baker

- And so it's an issue of stable, long-term support.
- How can the GRA facilitate such support?
  - Global agroecosystem network (similar to NEON in scope, but for agricultural systems), <u>or</u>
  - Data network only; Open access; *Knowledge Network of Biocomplexity* as an example.







# Thank you for your attention



# Objectives and expected deliverables of the workshop

### Sylvain Pellerin, Pierre Cellier INRA, France

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:<br/>do we have what is needed to explore mitigation options?"



• N transformation processes in soils which produce N<sub>2</sub>O (Nitrification, denitrification) are controlled by many chemical, physical and biological variables

- •[NO<sub>3</sub><sup>-</sup>], [NH<sub>3</sub>], pH
- T°, WFPS
- Bacterial communities (ammonia oxidizing bacteria, denitrifiers,...)
- These variables, and their distribution in space and time, depend on soil and climatic conditions, and are also strongly impacted by several management agricultural practices
  - N fertilisation doses, forms and placement
  - Tillage
  - Residue management
  - Crop succession,



Butterbach-Bahl, 2014
• Efforts for measuring  $N_2O$  emissions in field trials have started only recently (much later than for  $NO_3^-$  losses in water).

 Shortcomings remain about measurement techniques, especially when comparing several management practices (needs for trade-offs between number of treatments and sampling density)

• Common databases are at their early stages









- Because of processes acting at different timescales and spatial scales, and because of complex interactions, the effect of agricultural practices on  $N_2O$  emissions is not always easily interpretable, and often hardly predictable
- Simulation models are needed:

- to decipher the relative effects of soil properties, climate, agricultural management practices for a wide range of circumstances;

- to interpret and compare data from different experiments;

- for inventory purposes

• But to what extent process-based models account for the effect of agricultural management practices remains a question





#### Freibauer and Kaltschmitt, 2003

Smith, 2014



Conversely, management practices offer levers for mitigating N<sub>2</sub>O emissions Example of a recently published advanced study in France:

« How can french agriculture contribute to reducing greenhouse gas emissions? Abatement potential and cost of ten technical measures »

26 proposed technical measures, each of them characterized by

- the annual GHG emission abatement potential (in Mtons of CO<sub>2</sub>e avoided per year)

- the cost to the farmer of the metric ton of CO<sub>2</sub>e avoided (in € per t of CO<sub>2</sub>e avoided)



### Pellerin et al., 2013



- Adjust fertiliser application rates to more realistic yield targets
- Make better use of organic fertiliser
- Adjust application dates to crop requirements
- Add a nitrification inhibitor
- Incorporate fertiliser
- Introduce more grain legumes in arable crop rotations
- Increase legumes in temporary grassland
- Introduce more cover crops and vineyard/orchard cover cropping
- Make the most intensive permanent and temporary grassland less intensive by more effectively adjusting nitrogen fertiliser application
- Reduce the nitrogen content in the diet of dairy cows
- Reduce the nitrogen content in the diet of pigs



GLOBAL



- 30% of the cumulated abatement potential is related to N management and associated  $N_2O$  emissions (N fertilisation, legumes, N content in animal diets,...).
- The main part of the potential abatement targeting N<sub>2</sub>O emissions has a negative cost (win-win measures)
- However, the assessment of the potential abatement of most measures was characterized by a very high uncertainty (especially because of uncertainty on  $N_2O$  emissions), also for measures not targeting  $N_2O$  emissions (ex reduced tillage)



GLOBA

Measures targeting a reduction of  $N_2O$  emissions

⇒ In view of using models to explore **mitigation** options, the ability of simulation models to account for the effect of agricultural management practices on N<sub>2</sub>O emissions must be better assessed



# Objectives of the workshop

In the context of croplands, the objectives of the workshop are to assess the ability of models to account for the influence of the main drivers on  $N_2O$  emission and prepare a model intercomparison (in relation with C-N cross-cutting group, CN-MIP). For this, we need to improve synergy between the modelling and data collection effort

This requires analysing the following :

- Identify the key management practices that influence  $\mathrm{N_2O}$  emissions and offer levers for mitigation
- Assess the ability of models to account for their effects on emissions (from a conceptual point of view)
- Suggest improvements for these models
- Identify the available datasets to assess or compare models in this respect and make suggestions for improved protocols



## **Key questions to be addressed during the workshop** How agricultural management practices affect N<sub>2</sub>O emissions?

- $\bullet$  What are the key management practices that influence  $N_2O$  emissions, depending on the context?
- Do we have enough experimental results? Are they reliable? Is there some important pedoclimatic and/or agricultural contexts for which data are missing?
- Are interactions with climatic and soil conditions correctly understood?
- How to avoid the risk of abusive generalization?
- Have interactions between management practices received enough attention?
- Are there some technical options that warrant more studies (especially options that are used for mitigation goals like reduced tillage)?
  Has the risk of pollution swapping received enough attention?
- What are the best levers for mitigation?



## Key questions to be addressed during the workshop

Do models correctly account for the effect of agricultural management practices on  $N_2O$  emissions?

- $\bullet$  How to parameterize the effects of agricultural practices on  $N_2O$  emissions in crop/biogeochemical models?
- Have models been correctly evaluated in this respect?
- What is the required accuracy of predictions, depending on the objective of the modelling (interpret and compare experiments, explore mitigation options, inventory purposes,...)?
- How to better evaluate and improve models in this respect?

• What are the interests/drawbacks of other approaches (meta-analyses,...)?



## Key questions to be addressed during the workshop

How to make the collective effort of data acquisition and model evaluation and improvement more efficient?

- can we make a synthesis of available datasets and identify their adequacy to assess or compare models (in collaboration with the CN cross-cutting group)?
- can we provide rules on how to measure N<sub>2</sub>O emissions and ancillary variables to account for the effect of agricultural practices?
- in view of future call for proposals, do we have suggestions for a new project?