

Session 1 – Fertilisation techniques

Chair: Klaus Butterbach-Bahl Co-chair: Per Ambus

Key note lecture - Philippe Rochette

Short presentations:

- Elizabeth Pattey
- Raia Silvia Massad

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

Key note lecture

Fertilisation techniques and N₂O emissions

Philippe Rochette AAC, Canada

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

Nitrogen Fertilization Techniques and Soil N₂O Emissions

Experimental database to explore mitigation options

Philippe Rochette Agriculture et Agroalimentaire Canada Québec

Scientific papers "N₂O + Soil + Fertilizer"

N Fertilizers Impacts on Soil N₂O Emission

- Following nitrogen fertilizer application, soil mineral N content is increased with associated risks for environmental losses (NH₃, NO₃, NO_x, N₂O)
- Nitrogen fertilizer use is the <u>major source</u> of N₂O emissions from agricultural soils (35% of direct emissions in Canada)
- Practices for mitigating fertilizer-induced emissions aim at:
 - Reducing soil mineral N concentration
 - Reducing N rate, improving N placement, timing and form, etc.
 - Avoiding fertilizer-, soil- or climate-induced conditions that favor N₂O-producing processes

N₂O controls - Conceptual Model

Nitrification

Denitrification

- Fertilization interacts with many other management practices, soil properties and climate
- Field studies inform on <u>specific situations</u> (soil x climate x farming practice)
- Generalization of results from field studies is a risky business

N Fertilization Practices affecting N₂O Emissions

- Application Rate
 Emission Factor
- Type / Form
 - NH₄ vs NO₃
 - Source
 - Nitrification inhibitors
 - Controlled-release

Placement

- Banding vs Broadcast
- Surface vs Incorporation
- Timing
 - Split application
- Mineral vs Organic
 - Others
 - Biochar

N Fertilizer Rate

Fertilizer-Induced EF

- \bullet Nearly all datasets indicate that N_2O emission increases with increasing N rate
- By how much?
- The emission factor (EF) is the most-often used index of N-driven soil N_2O emissions
- In 2007, IPCC recommended that when there is no information specific for a given situation, a default EF of 1% should be used (Bouwman et al., 2002)

Fertilizer-Induced EF

Fertilizer-Induced N₂O Emissions in Canada Impact of Rainfall

(Rochette et al., 2008)

Fertilizer-Induced N₂O Emissions in the Mediterrannean Climates Impact of Irrigation

Fertilizer-Induced N₂O Emissions in Canada Impact of Soil Texture

(Rochette et al., 2008)

Fertilizer-Induced EF

- EFs are mostly influenced by soil environmental conditions
- In Canada, <u>71% of the variability in EF</u> among field studies is explained by differences in soil properties and climate
- \bullet EFs help target where adoption of mitigation practices will result in greatest decreases in N_2O emissions

Fertilizer-Induced EF

- IPCC default EF (1%) is a summary of literature prior to 2002 and is likely biased towards temperate humid conditions (globally biased)
- IPCC EF is not an interesting option for assessment of site-specific mitigation (locally wrong)
- We need models for predicting EFs for given situations
 - Simple relationships (rainfall, soil texture, SOM)
 - Complex models (Del Grosso et al., 2006; Smith et al., 2010)

Response of soil N₂O to N fertilizers Linear or Non-Linear?

Is EF constant with N rate?

Metaanalysis (Kim et al., 2013)

- 26 datasets with \ge 4 N rates
- 18 were non-linear
 - 16 were exponential
 - 2 were hyperbolic
- 4 were linear

Similar conclusion in France (Philibert at al., 2011)

Non-linearity is related to N rates in excess of crop needs (Van Groenigen et al., 2011)

(Snyder et al., 2009; based on Bouwman et al., 2002)

Good news for mitigating potential

Options for Reducing N-Ferilizer Rate

• Avoid excess

- How is the threshold defined?
- Reducing N rate below agronomic optimum may have perverse impacts such as increased acreage to maintain production (no net gain)
- Replace non N-fixing crops by legumes
- Account for "soil N supply" (previous-year crop residues; SOM)
- Optimize organic N sources
- Balanced crop nutrient supply
- Precision agriculture (Sehy et al., 2003)
 Site-specific N fertilization resulted in similar yields and in N₂O emissions 34% lower than uniform fertilization

- •NH4⁺ vs NO3⁻
- Source (urea, AA, CAN, UAN, AN, AS,...)

- •Nitrification inhibitors (DCD, nitrapyrin)
- •Controlled-release (SCU, PCU, etc.)

N Fertilization - NH₄ vs NO₃

- In theory, NH_4 has a greater potential than NO_3 because it can contribute to both nitrification and denitrification processes.
 - NH₄ > NO₃ (Bouwman et al., 2002; Tenuta and Beauchamp, 2003; Velthof et al., 2003; Liu et al., 2007)
 - Urea was greatest (Tenuta and Beauchamp, 2003)
- <u>In practice</u>, interactions with environment often override this effect:
 - NO₃ > NH₄ under wet soil conditions (Velthof et al., 1996; Zanatta et al., 2010; Huang et al., 2014)
- "At this stage, it is difficult to say with any certainty weather a strategy based on urea or AN would result in the smaller N₂O emissions" (Harrison and Webb, 2001)

N Fertilizer Type

Direct comparisons

- Urea
 - = AA (Burton et al., 2008)
- No clear trend of fertilizer source impact
- Most of these differences can be explained by soil environmental conditions
- <u>NH₄-based</u> fertilizers emitting more in situations where <u>nitrification</u> was favored
- <u>NO₃-based</u> fertilizers emitting more in situations where <u>denitrification</u> was favored
- Difficult to assess from literature because N source is often confounded with placement method

N Fertilizer Type

- When all factors are included, difference among fertilizer types disappear (Stehfest and Bouwman, 2006)
- On average, no major gain of selecting of NH_4 over NO_3
- Urea is by far the most widely used N fertilizer
- \bullet Proposing fertilization strategies that account for the impact of urea on soil N_2O emissions should be a priority
- Need more research on the role of NO₂ accumulation (Venterea)

N Fertilization - Nitrification Inhibitors

- <u>Controlling nitrification is critical</u>
- Nitrification inhibitors are very efficient but...
- Half-life is temperature-dependent (Di and Cameron, 2004)
- Adds ≈ 10% to N fertilizer cost (Snyder et al., 2009)
- Is it an economical option? (Chambers et al., 2000; Harris et al., 2013)

• ... and pig slurry (Vallejo and Sanz-Cobena; Aita et al., 2014)

N Fertilization - Slow Release

- Overall mean reduction but less efficient than nitrification inhibitors
- Interactions with climate and crop type
- May increase emissions when delayed N release occurs at a time of low plant uptake

Efficient Use of Organic N Sources

- Does organic N result in greater N₂O emissions than synthetic N?
 - Lower mineral N content
 - May decrease soil bulk density

- Input of available C for denitrification
- Anoxic hotspots

N₂O Emission Factor Organic vs Synthetic Sources

Direct comparisons

- Solid manures are often not incorporated

(Anaïs Charles, unpublished)

Organic amendments Metaanalysis -Global data-

• EF_{org} (0.5%) is half the IPCC default EF

EF_{org} decreases with increasing amendment "stability"

(Anaïs Charles, unpublished)

Confounding factors when comparing manure with synthetic fertilizer

- Predicting N₂O emissions from organic amendments is difficult because it requires adequate simulation of C and N dynamics
- Need for models predicting N_2O production based on organic amendments characteristics (not on source)
- DNDC predicted EF_{org} much smaller than EF_{synt} in UK (Cardenas et al., 2013)

N Fertilizer Placement

- Surface Broadcast with and without Incorporation
- Banding vs Surface Broadcast
- Banding vs Surface Broadcast + Incorporation

• Improves N-Use Efficiency

• Less-aerated environment

Net effect on N_2O ?

Mean increase when incorporated to shallow depths

Stimulation decreases with depth?

Very few field studies

N should be placed below 5 cm in no-till soils because of stratification of SOM (Venterea and Stanenas, 2008)

006)

- Improves N-Use Efficiency
- Decreases soil volume in contact with N inputs
- May slow down nitrification (urea)
- Increased soil N concentration in the band (non-linear EF)
- NO₂ accumulation (urea)

Net effect on N_2O ?

-Banding (urea) was <u>greater</u>: (Cheng et al., 2006; Engel et al., 2010; Smith et al., 2012; Halvorson and Del Grosso, 2013)

-Banding urea was equal (Cheng et al., 2002; Burton et al., 2008; Pfab et al, 2012)

- Isolates the impact of banding

- Urea banding was <u>2 times greater</u> (Maharjan and Venterea, 2013) [explained by NO₂ accumulation]

The Ultimate Modelling Challenge?

- \bullet Banding and incorporation often increase N_2O emissions
 - we need to account for the impact of .
 - N rate (non-linearity)
 - N type (urea, AA)
 - Plant N uptake
 - Other environmental losses (leaching and volatilization)

1

- Stratification of soil physical, chemical and microbial properties (no till vs conventional)
- Multi-dimensional processes
- Manure...

N Fertilization-Split applications

- Inconsistent results likely due to interaction with climate (application of a fraction of N when soils are warmer)
- Accurate weather forecast would help (rain)
- N application is based on optimum timing for crop uptake; not for optimum soil conditions for low N_2O production
- More research is needed

Biochar

- Mean <u>reduction</u> of 54% in N₂O emissions (Metaanalysis; Cayuela et al., 2013, A.E.E.)
- Influenced by biochar feedstock, pyrolysis temperature and C:N ratio
- Lack of clear understanding of key mechanisms (Nelissen et al., 2014)
 - Greater NH₃ volatilization, microbial N fixation, and sorption of NH_4^+ and NO_3^-
 - Biochar pH effects
Do we have what is needed to explore mitigation options?

Option	# of studies	mitigation potential	uncertainty
Application rate	medium	medium	low
N fertilizer source	low	medium	medium
Nitrification Inhibitor	Medium/ <mark>high</mark>	high	low
Controlled- release	low	medium	medium
Placement	low	medium	high
Timing	low	low	medium
Precision Agriculture	low	high	low
Organic	high	high	medium

Holistic Approach

- Indirect emissions:
 - Contribution of NO_3^- to leaching
 - Contribution of NH_4^+ to volatilization
- GHG emission for N fertilizer production differs between types :
 - NH_3 : 2.6 kg CO_2 -eq kg⁻¹ N
 - Urea: $3.2 \text{ kg } CO_2 \text{-eq } \text{ kg}^{-1} \text{ N}$
 - NH_4NO_3 : 9.7 kg CO_2 -eq kg⁻¹ N
- Account for interactions with soil, climate and other farming practices
- Additivity of impacts?
- Field measurements cannot answer all questions...

NH4 vs NO3 Confounding factors in direct comparisons

- NH3 volatilization
- Strong interaction with soil type and climate
- Impacts of urea on soil pH
- Confounding effects of type and placement

Summary

- Equal rates? comparing EFs for different rates assumes linear response
- Area- or yield-based EFs?
- Decreasing N rate is the most-certain way to reduce N_2O emissions. However, probability of adoption is low when current rates are not excessive.
- Perverse effects such as increasing acreage
- Other options are needed that will lower emissions and maintain/increase yields.
- Little research on Timing
- Little research on precision farming.
- Complex situation because of indirect emission. They must be included but EF2 is highly uncertain.
- Pulse events

Modelling Soil N₂O Emissions following application of organic amendments

- DNDC predicted EForg much smaller than EFsynt in UK (Cardenas et al., 2013)
- Emissions from manures are often higher than from mineral fertilizers when applied on soils with low organic matter (Rochette et al., 2000; Velthof et al., 2003; Chantigny et al., 2009)
- Predicting N₂O emissions from organic amendments is difficult because it requires adequate simulation of C and N dynamics

N Fertilization- Fall vs Spring

- <u>In theory</u>:
 - Increases the duration of the period with high soil N content in absence of crop N uptake
 - Snowmelt and spring thaw are known to favor N_2O emissions (and NO_3 leaching)
 - Cold temperature may slow down N transformations
- <u>In practice</u>:
 - Practice popular in in North American Prairie region
 - Crop yields are often unaffected (Grant et al., 2007)
 - N_2O emissions:

-Spring > Fall (Delgado et al., 1996; Rochette et al., 2004; Rowlings et al., 2013) -Spring < Fall (Hao et al., 2001; Soon et al., 2011; Burton et al., 2008)

- Raises the complex issue of soil N transformations and N_2O emissions during winter and spring thaw

Soil N₂O from Organic Amendments in Mediterranean Climates Metaanalysis –(Aiguilera et al., 2013)

NH₄ vs NO₃

- N₂O production during nitrification
 - Generally has a lower N_2O yield than denitrification
- Accumulation of NO₂ following application NH₄based fertilizers (Ventera and Rolston, 2000)
 - NH₃ toxicity
 - Nitrification-induced decrease in pH
 - $\text{NO}_2 \rightarrow \text{HNO}_2 \rightarrow \text{N}_2\text{O}$
- May explain large emissions following banding NH₄-based fertilizers (urea, AA)

NH₄ vs NO₃

- Impact of NO_3 is more straightforward than that of NH_4
- Increase in denitrification when organic C is available and redox potential is low
- N_2O yield is usually greater than for nitrification
- Chemodenitrification may also be involved

Short presentation

The importance of accounting for soil thawing in quantifying N2O emissions from cropland in response to N fertilization. – Comparison with DNDC predictions

Elizabeth Pattey AAC, Canada

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

The importance of accounting for soil thawing in quantifying N₂O emissions from cropland in response to N fertilization. – Comparison with DNDC predictions

E. Pattey, W. Smith, B. Grant and R.L. Desjardins

GRA – N2O 2014, Paris Elizabeth.Pattey@agr.gc.ca

In To

GRADIENT FLUX RESOLUTION USING SINGLE-PATH TDL

30-min 2-level TDL gradient resolution: N₂O (1ppbv noise over 10s): 16 pptv

> 30-min Flux-Gradient resolution: $[z_0=0.1 \text{ m s}^{-1}; u_*=0.2 \text{ m s}^{-1}; d=0.66\text{ m}; z_2=3.25\text{ m}; z_1=2.25 \text{ m}]$

$F(N_2O) \approx 7.7 \text{ ng } N_2O \text{ m}^{-2} \text{ s}^{-1}$ 4.9 ng $N_2O-N \text{ m}^{-2} \text{ s}^{-1}$

Pattey, E., Edwards, G., Strachan, I.B., Desjardins, R.L., Kaharabata, S. and Wagner Riddle C., 2006. Towards standards for measuring greenhouse gas flux from agricultural fields using instrumented towers. Can. J. Soil Sci. 86: 373-400.

Flux towers are very suitable measurement approach ... during snowmelt

Permanent Site, Ottawa - Snowmelt 1997

Pattey E., Edwards, G.C., Desjardins, R.L., Pennock, D., Smith W., Grant B., MacPherson, J.I., 2007. Tools for quantifying N₂O emissions from Agroecosystems. *Agric. For. Meteorol*.142(2-4): 103-119

Annual N₂O emissions in Eastern Canada

Seasonal N₂O emissions in Eastern Canada

DNDC Predictions

Corn 155N/99N 1998 - Ottawa (Field 25)

Calendar Day (1998)

DNDC Predictions

Soybean 1999 - Corn 170N/107N 2000 - Ottawa (Field 25)

Calendar Day (2000)

Short presentation

A budget of N2O emissions from fertilizer use over France: a comparison of three regional models

> Raia Silvia Massad INRA, France

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

Enerbio

A budget of N2O emissions from fertilizer use over France: a comparison of three regional models

<u>R.S. Massad</u>¹, V. Prieur², E. Haas³, I. Pison², M. Saunois², S. Klatt³, M. Lopez², M. Scmidt², M. Schultz⁴ and B. Gabrielle¹.

 ¹ INRA, AgroParisTech, UMR1091 EGC, 78850 Thiverval Grignon, France
² CEA, CNRS, UVSQ, Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Giff sur Yvette, France
³ Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
⁴ Norwegian Meteorological Institute, Oslo, Norway

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

WHY and For What?

✓ Agricultural activities contribute to about 19 % of France s green house gas emissions and to 84 % of total national N_2O emissions in 2009 (CITEPA, 2011).

✓ Agricultural emissions are influenced by several environmental factors

- soil temperature
- soil moisture
- **management** practices (N application, grazing regime, cutting, etc.)

 \checkmark These controlling factors and soil properties interact at different **temporal** and **spatial** scales making it challenging to quantify and assess N₂O emissions at the regional scale.

- \succ Improve the current estimates of biogenic sources of N₂O
- Produce and assess maps of N₂O emissions from agricultural ecosystems at the regional scale using a bottom-up approach with biophysical models (CERES-EGC, Landscape-DNDC & ORCHIDEE-CN)

The models

Gabrielle et al. 1998

Li et al. 1997, Haas et al.

Krinner et al., 2005, GBC; (modified)

Spatialization-France

ON AGRICULTURAL GREENHOUSE GASES

The Input data

PARIS

Yearly mean emissions over France

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

Measurement sites and Atmospheric N₂O mixing ratio using gaschromatographic measurement systems equipped with ECD (Electron Capture Detector) in 2010 and 2011 at the stations Gifsur-Yvette (Gif), Trainou tower (TRN) and Puy de Dome (PUY).

The link between ecosystem models and measurements

The Chimere Chemistry and Transport model

Besagnet et al., 2010

Flux scenarios	S1	S2	S3	S4	S5	S6
Anthropogenic EDGAR 4.0	Х	Х	Х	Х	Х	Х
Natural soils						
Bouwmann et al., 1995	Х	Х	Х			
OCN-HR (Prieur 2012)				Х		
CERES + OCN-HR					Х	
DNDC + OCN-HR						Х
Biomass Burning GFED-v2, van der Werf et al.	Х	Х	Х	Х	Х	Х
Oceans						
Nevison et al., 1995		Х				
Nevison et al., 2004			Х	Х	Х	Х
PISCES (Bopp, pers, comm.)	Х					

How do the models perform?

Giff sur Yvette

17-19 March 2014 PARIS Workshop "Experimental databases and model of N2O emissions by croplands: do we have what is needed to explore mitigation options?"

And at the other sites ...

What are the main contribution sources?

17-19 March 2014 PARIS

What are the main contribution sources?

17-19 March 2014 PARIS

What are the main contribution sources?

Tentative N₂O budget for France (2007)

	Edgar32	O-CN	CERES	CITEPA
Gg N/yr	(2000)	(2007)	(2007)	(2007)
Industry and transport	51.89	24.25	24.25	24.25
Wastewater treatement	11.82	11.82	11.82	
Sub-total Non Biogenic	63.71	36.07	36.07	24.25
Land Use Change	2.86	2.86	2.86	2.86
Unfertilized forests end grasslands		20.90	20.90	20.90
Grazed or fertilized grasslands				10.62
Direct from Arable crops (N fixation)				6.47
Direct from Arable Crops (Mineral fert.)	40.86	39.56	20.10	30.23
Direct from Arable Crops (Organic fert.)	12.21			11.59
Indirect emissions (N leaching)	28.41	3.00	3.00	35.64
Indirect emissions (Atmos. deposition)	5.26		3.00	6.73
Indirect emissions (crop residues)	29.09			6.66
Manure (confined)	6.24	6.24	6.24	7.08
Sub-total Biogenic	124.93	72.56	56.10	138.79
TOTAL	188.64	108.63	92.17	163.04

Take home message

- ["] Emission models tend to undersetimate emissions when compared to concentrations retrieved in 3 tower measurements in France
- Estimates of direct emissions were closer between models and inventories, but still varied within a factor of 2
- We probably are missing some sources in the emission maps probably linked to unavailability of data at the France scale (organic fertilizer application, etc.)
- Closing the gap with the top-down estimate implies that the lower end of the emissions is more probable, resulting in an emission factor of 0.5 % rather than the 1% (Tier 1 value)
- This would have a large impact on the GHG balance of crops in France, but should be mitigated by the fact that it strictly applies to 2007
- Similar estimates should be carried out for other climatic years to confirm this trend

Thank you for your attention

