

Session 3 - Cover crops, legumes and emissions at rotation scale

Chair: Charles Rice Co-chair: Elizabeth Pattey

Key note lecture - Bob Rees

Short oral presentations:

- Marie-Hélène Jeuffroy, Pierre Cellier
- Xiaoxi Li
- Alberto Sanz-Cobeña

Key note lecture

Cover crops, legumes and N_2O emissions at rotation scale

Bob Rees, SRUC, UK

Angelopoulos, N, Eory V, Maire J, Dequiedt B, Iannetta PPM, Kuhlman T, Murphy-Bokern D, Pappa V, Reckling M, Sylvester-Bradley R, Schlaefke N, Smith K, Stoddard F, Thorman R, Topp CFE, Watson CA, Williams M, and Zander P.

Soyabean production

FAOSTAT 2013

Global grain legume production

FAOSTAT 2013

Global fertiliser use and N₂O emissions

FAO stat

The contribution of N fixation to N₂O emissions

- Clover grown in an atmosphere labelled with ¹⁵N₂
- Allows direct measurement of N fixation and N₂O produced from recently fixed N

Summary

- Legumes are a vital global component of agricultural systems and their low N₂O emissions would appear to offer mitigation potential
- The use of legumes for N₂O mitigation can be economically favourable, but supportive policies would probably be necessary to promote wider adoption
- Emissions of N₂O from crop residues and cover crops is poorly understood, and likely to be influenced by residue quality and management

Introducing pea crop in arable crop successions: an efficient way to decrease greenhouse gas emissions from cropping systems

Marie-Hélène JEUFFROY, Pierre CELLIER INRA, France

Context

- N₂O emissions in the European cropping systems are mainly linked with the use of mineral nitrogen fertilizers
- Decreasing the use of N fertilizers without reducing crop production is allowed by introducing legumes in cropping systems. Among them, pea is the most grown legume in Europe.
- Yet, the effect of legumes on N₂O emissions is still debated in the literature (*Rochette & Janzen, 2005*) due to :
 - Possible N₂O emissions during the N₂ fixing process
 - Their residue, rich in Nitrogen
 - The large amount of N rhizodeposition in the soil
- Few data on N₂O emissions on pea are available, especially in comparison with other crops grown in the same conditions, while emissions vary with climate, soil characteristics, the cropping system considered.

Aims

- to quantify N₂O emissions from a pea crop in comparison with wheat and oilseed-rape crops, fertilized or not, during spring
- To quantify N₂O emissions during autumn, after a pea crop, a wheat crop or an oilseed rape crop
- To quantify N₂O emissions in various rotations

Material and Methods 3 years field experiment

2006/2007	2007/2008	2008/2009	2009/2010	
	Wheat (N/no N)	OilSeedRape	Wheat (N/no N)	
	Wheat (N/no N)	Реа	OilSeedRape	
Wheat	Wheat (N/no N)	Реа	Wheat (N/no N)	
or	Wheat (N/no N)	Wheat (N/no N)	OilSeedRape	
Barley	OilSeedRape	Wheat (N/no N)	Wheat (N/no N)	
	OilSeedRape	Wheat (N/no N)	Реа	
	Реа	OilSeedRape	Wheat (N/no N)	
	Реа	Wheat (N/no N)	Wheat (N/no N)	

Fertiliser rates calculated with the balance-sheet method (adapted according to the preceding crop)

→ Comparison of crops, preceding crops and rotations

17-19 March 2014 PARIS

Material and Methods

Crops are grown on a same field \rightarrow similar soil and weather conditions for N₂O emissions

3 years of measurements

N₂O measurement with static chambers (6 per treatment)

- Every month during the crop cycle ; twice a week in the two weeks following a N fertilizer application
- Measurement of N₂O in the chamber at closure of the chamber, and 45 min, 90 min, and 135 min later
- → 20 measurements in spring and 10 measurements in autumn, in average.
- + agronomic measurements (N in soil, SWC, yield, ...)

17-19 March 2014 PARIS

Pea vs. other crops (case of spring 2008)

- \rightarrow A high variability in N₂O emissions across the spring
- \rightarrow Fertilized crops (W and OSR) have higher emissions than unfertilized wheat
- ightarrow The emissions on pea are similar to those of unfertilized wheat
- ightarrow The same results were observed during the three years

17-19 March 2014 PARIS

CROPLANDS

GIOBAI

GROUP

→ No effect of the nature of the previous crop on N₂O emissions in autumn, even though mineral N conc. was higher in the soil after the pea crop

Comparison of crops (cumulated values from January to July) Daily average N2O emissions in spring

wheat or oilseed rape, but similar to unfertilized wheat, whatever the year

17-19 March 2014 PARIS

Comparison of rotations

N20 emissions cumulated on 3 years

 \rightarrow A strong effect of the rotation on the cumulated N₂O emissions (for 3 years) \rightarrow The rotation without pea has the highest emissions

\rightarrow Rotations including 1 Pea and 2 fertilized crops have 20% less emissions

\rightarrow Rotations with 1 pea and 1 unfertilized crop have 50% less emissions

17-19 March 2014 PARIS

Conclusion and perspectives

- ✓ This study provided new data on N₂O emissions on grain legumes and at rotation scale
- ✓ In the field, N₂O emissions were very low on pea, during the crop and the intercrop. No effect could be observed during the following crop
- ✓ These results are in agreement with the IPCC reference, which does not take into account N₂O emissions from N₂ fixation
- ✓ The introduction of one pea crop in a 3-year rotation could allow a reduction of more than 20% of N₂O emissions !
- ✓ The effect of GHG budget should be larger, when accounting for the ernegy saved from not using industrial fertilizers

In a near future, we will use models in order to simulate the daily emissions, to be able to make a better integration of N_2O emission along the season.

Thank you !

Biogeosciences, 10, 1787–1797, 2013 www.biogeosciences.net/10/1787/2013/ doi:10.5194/bg-10-1787-2013 © Author(s) 2013. CC Attribution 3.0 License.

Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas

M. H. Jeuffroy^{1,2}, E. Baranger^{1,2}, B. Carrouée³, E. de Chezelles^{1,2}, M. Gosme^{1,2}, C. Hénault⁴, A. Schneider³, and P. Cellier^{5,6}

Study funded by the Ministry of Agriculture

Workshop "Experimental databases and model of do we have what is needed to explore m

Short presentation

Nitrous oxide emissions from an organic cropping system as affected by catch crop type and management

Xiaoxi Li, Aarhus Univ., Denmark Søren O. Petersen, Peter Sørensen Jørgen E. Olesen

Organic farming and CC

- **Expanding** in Denmark: >6%, double by 2020
- No manure input from conventional sources, 2022
- How to sustain N inputs and higher yields with less
 GHG emissions in organic farming?
- Increasing interest in using CC as biogas feedstock
- Hypothesis: a) LBCC, more N, higher risk of N₂O, lower yield-specific emissions; b) Harvest CC can reduce soil N₂O emissions

Experimental design

Research Centre Foulum, Viborg

Copenhagen

Aarhus

- Factor II -- 2 management
- H autumn harvest end Oct 2012
- U spring incorporation late Apr 2013

Spring barley: Apr – Aug 2013

and model of N2O emissions by croplands: re mitigation options?"

LBCC can give substantial C and N input

Catch crop type		Dry matter (Mg ha ⁻¹)		Top/root ratio	N content (%)		Total N (kg ha ⁻¹)		Top/root N ratio
		Тор	Root*	Tallo	Тор	Root	Тор	Root	IN TALIO
	Red clover	1.9 a	1.4 a	1.5 a	3.4 a	3.1 a	66 a	41 a	1.5 a
LBCC	Grass / clover	1.9 a	1.2 a	1.5 a	3.2 ab	2.7 ab	59 a	32 a	1.8 a
	Winter vetch	1.7 ab	1.2 a	1.4 a	4.0 a	2.7 ab	67 a	32 a	2.2 a
Non-	Fodder radish	1.7 ab	1.3 a	1.2 a	2.4 b	2.1 bc	40 b	26 a	1.4 a
LBCC	Ryegrass	1.3 b	1.3 a	1.0 a	2.5 b	1.6 c	32 b	23 a	1.5 a
Weeds	Control (no CC)	1.4 ab			2.2 b		31 b		

* Root (0-20 cm), >40% of DM, > 33% of total N

Different seasonal N₂O emission patterns

17-19 March 2014 PARIS

Mineral N increase after incorporation, differs among CC

Higher yield of barley in LBCC and non-harvest plots

Conclusions

- LBCC did increase the crop yield, but will not necessarily increase annual or yield-specific N₂O emissions
- Harvest of CC may reduce crop yield (i.e. WV), unless the harvested N is recycled to the field in manure of digested biomass; little effect on total N₂O emissions
- Long-term study (dif soil, climate & management), microscale soil process study and simulation study will help elucidate how LBCC can benefit a sustainable organic farming system

Workshop "Experimental databases and model of N2O emissions by croplands: 17-19 March 2014 do we have what is needed to explore mitigation options?"

PARIS

Short presentation

Implications of introducing cover crops in a maize cropping system: N uptake, NO_3^- and N_2O losses

Alberto Sanz-Cobeña, Technical University of Madrid, Spain

Cover crops

- Crops introduced to cover the soil within the period in which this is not protected by the main crop.
- Aiming to increase the sustainability of the cropping system

✓ Nutrients recycling

PARIS

✓ Reducing nitrate leaching

Field experiments

- 2006 -2010 in CC (barley, vetch and rape)-maize rotation.
- <u>Objectives:</u>
 Intercrop period (autumn-winter)
 - To study the effect of CC over N uptake, NO₃⁻ leaching and GHG emissions (only in 2009-2010).

Maize crop period (spring-summer)

- To study the effect of (previous) planted CCs over maize N uptake and NO_3^- leaching.
- To study the effect of incorporating CC residues (i.e. green manure from previous CC) to the soil over mineral N and GHG emissions (N₂O, CO₂, CH₄).

Experimental design

- Maize: yield, aerial biomass, N uptake.
- GHG: **N₂O**, CO₂, CH₄.
- Drainaje & NO₃ leached.
- Weather conditions (air temp., pp, ET₀, etc.)

Results: maize yield

		Biomass (kg dm ha ⁻¹)		N Conce	N Content (kg N ha ⁻¹)					
Year	Treat.	Grain	Total plant	Grain	Biomass	Grain	I	Biomass	Total pla	ant
	Vetch	14546	24129	1.16	0.49	168.7		44.8	213.5	
2007	Barley	14922	25243	1.20	0.40	179.0		40.1	219.1	
	Fallow	14351	24646	1.22	0.48	175.1		47.8	222.9	
	Vetch	11590	22195	1.36	0.66	157.3		66.3	223.6	
2008	Barley	11708	21805	1.30	0.61	151.4		58.2	209.6	
	Fallow	11438	22281	1.30	0.61	147.3		61.4	208.8	
	Vetch	11831	22477	1.35	0.72	158.7	а	71.2	230.0	а
2009	Barley	9796	18792	1.35	0.75	129.0	ab	63.2	192.2	ab
	Fallow	8446	17115	1.35	0.8	110.3	b	62.2	172.5	b
	Year	*	*	*	*	*		*	NS	
Treatment		NS	NS	NS	NS	NS		NS	NS	

CROPLANDS GROUP GLOBAL RESEARCH ALLIANCE

Results: N uptake by the maize crop

N from the fertilizer

							ne tertilize	sources			
		¹⁵ N concentration (%)			¹⁵ N recovered (kg N ha ⁻¹)			NRF	NOS ↓ (kg N	/	
Year	Treat.	Grain Biomass		ISS	Grain	Biomass Total		(%)	ha⁻¹)		
	Vetch	1.10		1.07		66.9	17.2	84.1	40.0	129.4	
2007	Barley	1.18		1.18		79.2	17.7	97.0	46.2	122.1	
	Bare fallow	1.13		1.10		77.8	20.9	98.7	47.0	124.2	
	Vetch	1.17	b	1.19	b	69.1	29.8	99.0	47.1	124.6	a
2008	Barley	1.27	а	1.29	а	77.0	30.6	107.6	51.2	102.0 k	b
	Bare fallow	1.29	а	1.29	а	73.7	30.4	104.1	49.6	104.7 k	b
	Vetch	1.16	b	1.19	b	68.2	31.9	100.1	47.7	129.9 a	a
2009	Barley	1.29	а	1.33	а	62.4	31.5	93.9	44.7	98.3 k	b
	Bare fallow	1.23	ab	1.29	а	53.5	31.2	84.8	40.4	87.7 k	b
Y	⁄ear	*		*		*	*	NS	NS		
Treatment		*		*		NS	NS	NS	NS	*	

Results: Nitrate leaching

- Lower drainage in CC plots than in fallow.
- 80% of drainage in periods with CCs.
- Vetch: more N in soil without increase in leached NO₃⁻.
- Barley: Immediate reduction in leached NO₃⁻ (no BNF & larger development).

Gabriel et al., 2012

Results: N₂O emissions Cumulative N₂O intercrop period (2010)

Sanz-Cobena et al., 2014

Results: N₂O emissions

Cumulative N₂O crop period

Conclusions

- 1. Replacing fallow by CCs in the intercrop period reduced N leaching without significantly decreasing maize yield.
- 2. Most of NO_3^- losses (e.g. 80%) occurred in the CCs period although NO_3^- concentrations fluctuated within the experimental period.
- 3. CCs reduced N leached, recirculated N and increased the N available in the upper soil layers.
- 4. Ba showed the highest efficiency as CC, reducing leaching and NO_3^- concentration. However, Vt increased the N content in upper soil layers.
- 5. Vt highest N_2O emission (75% >Control) in the intercrop period.
- 6. Fertilization of maize increased N_2O losses in all cases.
- 7. Only the incorporation of Rp and Ba residues increased N₂O emission (40 y 17%).
- 8. Total N₂O < than expected in fertilized crops (0.09 EF < IPCC₂₀₀₇ EF=1.00).

Remarks for modelling

- CCs in the intercrop period:
 - Effect of legumes over N2O losses
 - Effect of CC type over water balance (drainage)
- CCs as green manures:
 - N mineralization rates
 - Effect of CC types
 - N2O uptake

References

- Baggs EM, Rees RM, Smith KA, Vinten AJA. Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manag 2000; 16: 82-87.
- Chirinda N, Olesen JE, Porter JR, Schjønning P. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agric Ecosyst Environ 2010; 139: 584-594.
- Gabriel, J.L., Quemada, M., 2011. Replacing bare fallow with cover crops in a maize cropping system: Yield, N uptake and fertiliser fate. Eur. J. Agron. 34, 133–143
- Gabriel, J.L., Muñoz-Carpena, R., Quemada, M., 2012. The role of cover crops in irrigated systems: water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric. Ecosyst. Environ. 155, 50–61.
- Olesen JE, Hansen EM, Askegaard M, Rasmussen IA. The value of catch crops and organic manures for spring barley in organic arable farming. Field Crop Res 2007; 100: 168-178.
- Pappa VA, Rees RM, Walker RL, Baddeley JA, Watson CA. Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agric Ecosyst Environ 2011; 141: 153-161
- Sanz-Cobena, A., Garcia-Marco S., Quemada, M., Gabriel, J.L., Almendros, P., Vallejo, A., 2014. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? 466-467: 164-174. Science of the total environment.

Thanks for your attention!

Special thanks to: J.L. Gabriel; S. García Marco; A. Vallejo; M. Quemada