

Session 4 - Other management practices and combination of techniques

Chair: Alberto Sanz-Cobeña Co-chair: Bob Rees

Key note lecture - Per Ambus

Short oral presentations:

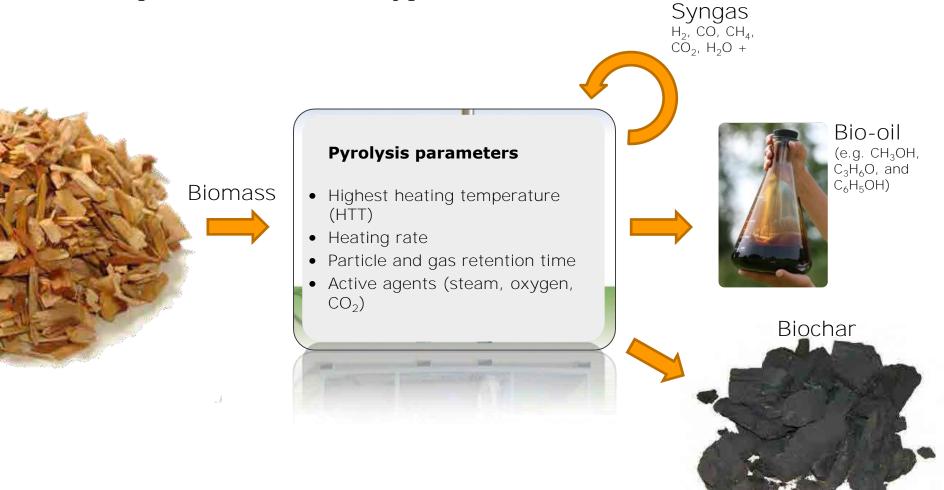
- Abdalla Mohamed
- Joël Leonard
- Anthony Vermue, Catherine Hénault
- Yam Kanta Gaihre

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

Key note lecture

Other management practices and N₂O emissions -Application of biochar as a tool to mitigate nitrous oxide emissions

Per Ambus


Center for Ecosystems and Environmental Sustainability Chemical and Biochemical Engineering Department Technical University of Denmark

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

Pyrolysis process

Heating of biomass without oxygen.

- Biochar sequesters carbon
- Biochar interacts with soil **nitrogen** availability
- Returns **nutrients** to the field (ash part)
- Biochar **increases pH** in acidic soils due to BC's content of bases (Ca, Mg, K etc.). Short term liming effect.
- Forms aggregates with the soil particles and stabilizes the soil
- Increases the cation exhange capacity (CEC) of the soil
- Increase soil microbial biomass
- Increases water holding capacity
- Increases soil porosity and aeration

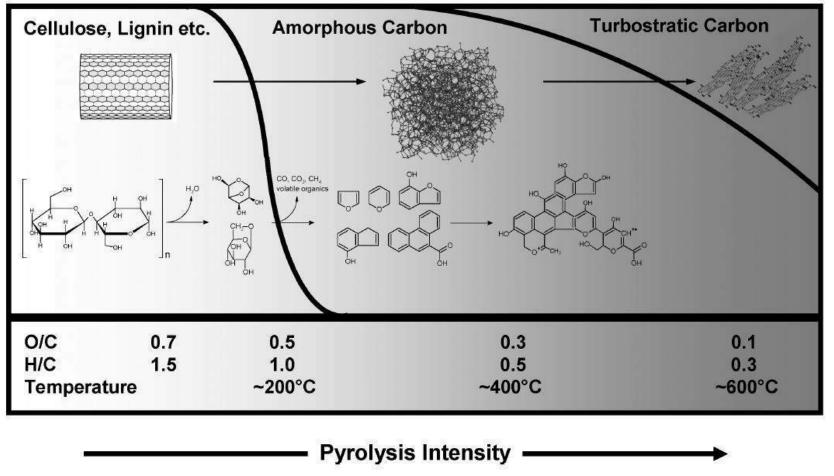
Verheijen et al. 2014

17-19 March 2014 PARIS

CROPLANDS GROUP GLOBAL RESEARCH ALLIANCE

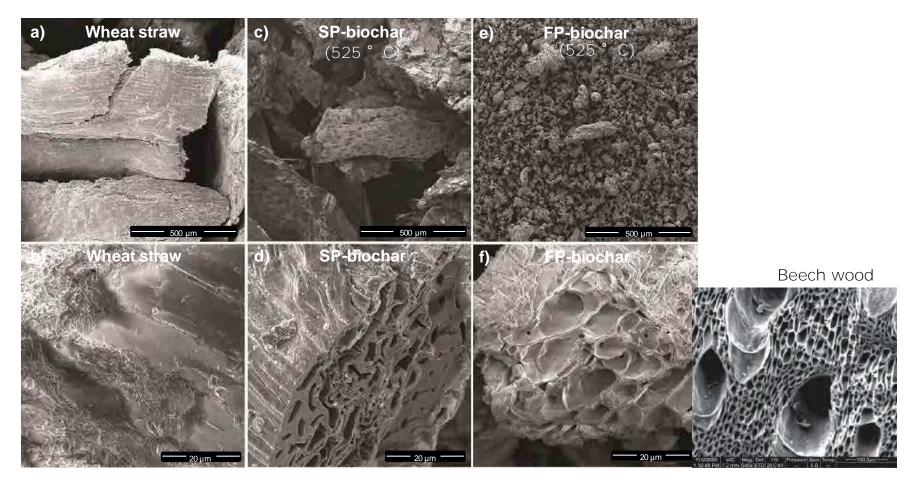
Slow pyrolysis

Gasification



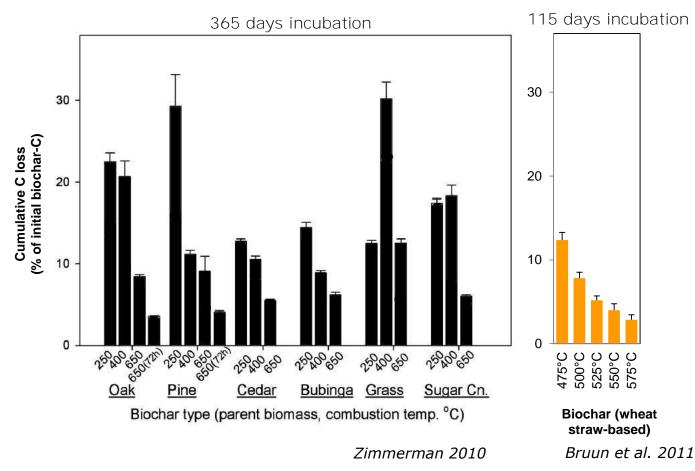
Fast pyrolysis

Feedstock transformation

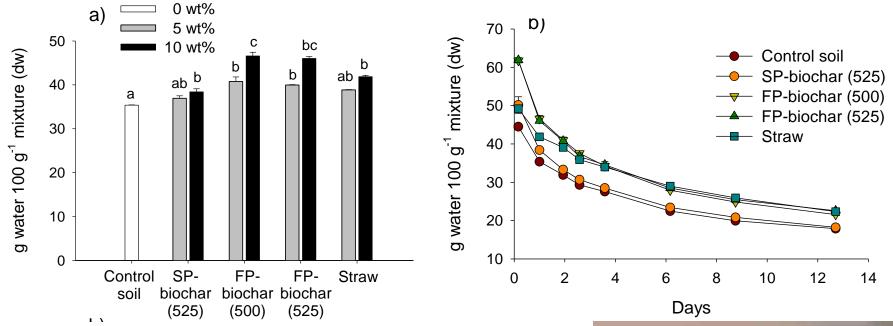


Lehmann et al 2009.

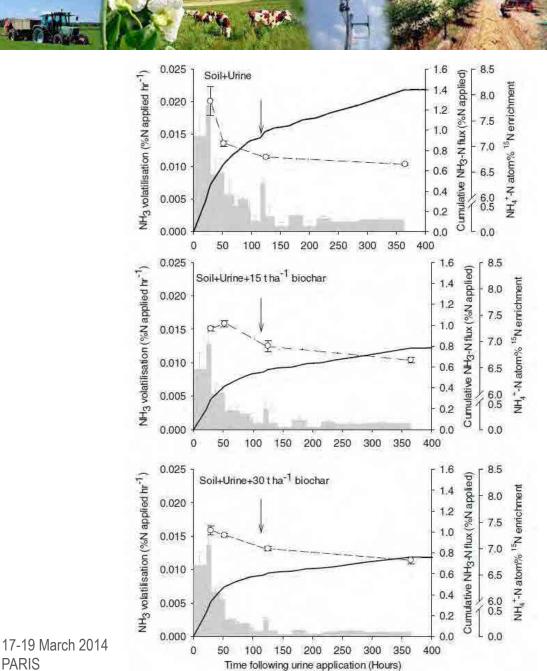
Relative Proportion


Biochar microstructure

Bruun et al. 2012.



Biochars stability depends on pyrolysis temperature and feedstock



Biochar increases soil water holding capacity

Application of biochar (10 wt%) to a sandy loam soil improved the WHC of the soil by 32 %

PARIS

BC captures NH₃

Reduced NH₃ emission from urine spots

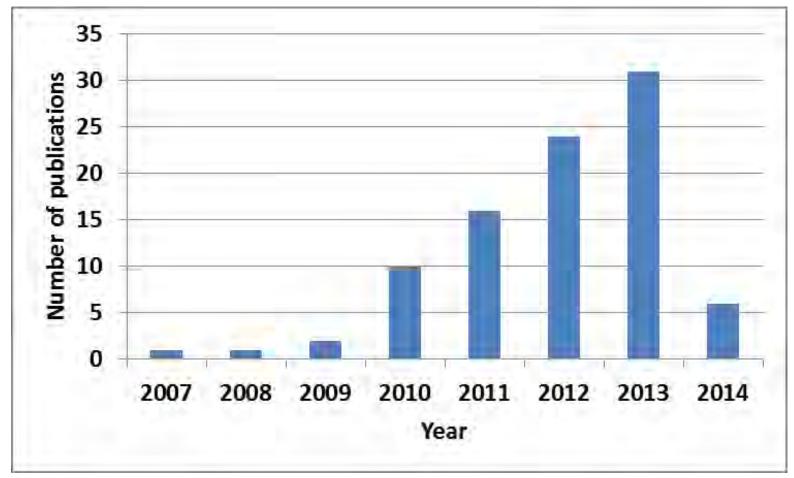
CROPLANDS GROUP

ON AGRICULTURAL GREENHOUSE GASES

GLOBAL RESEARCH ALLIANCE DTU

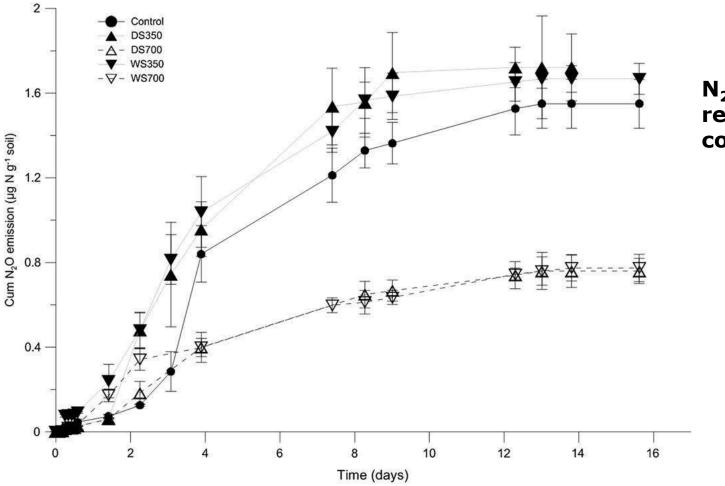
Adsorbed NH₃ is bioavailable

Taghizadeh-Toosi et al. 2012


Biochar and N₂O emissions ?

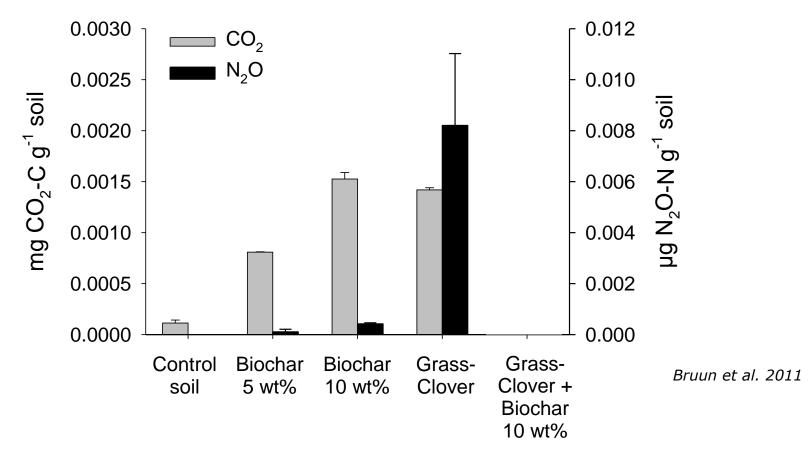
17-19 March 2014 PARIS

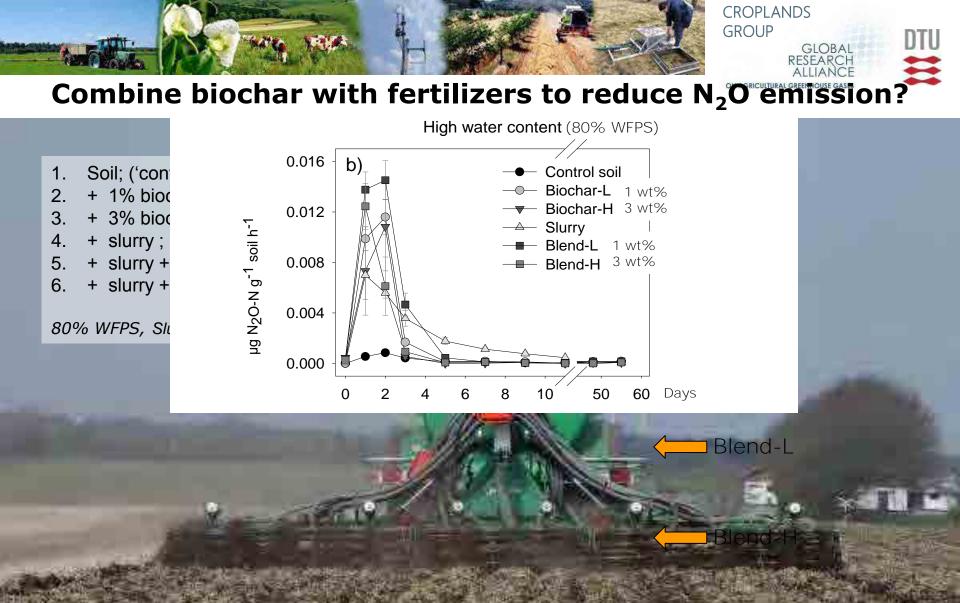
Photo: Greenpeace


91 WoS publications since 2007 [char* × nitrous oxide]

17-19 March 2014 PARIS

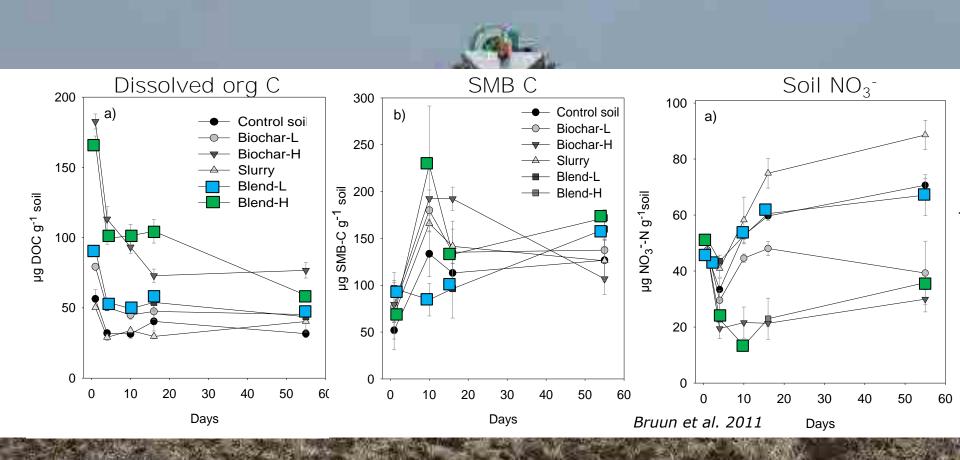
N₂O with different qualities of biochar

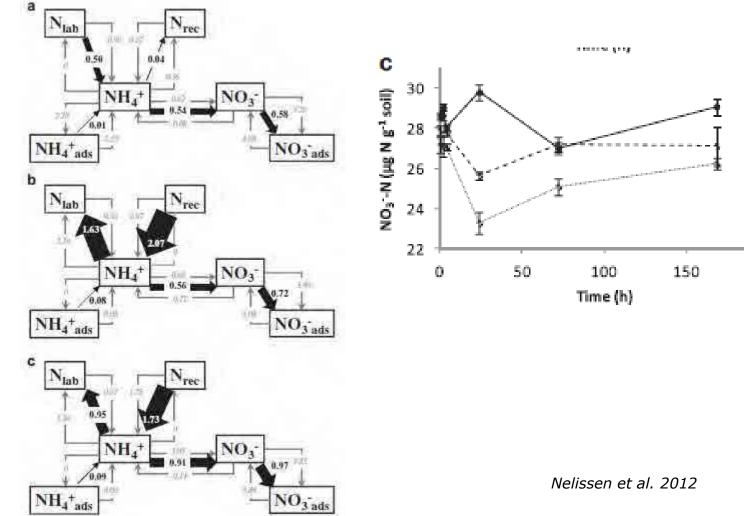

N₂O emission related to VOC content


Ameloot et al., 2013

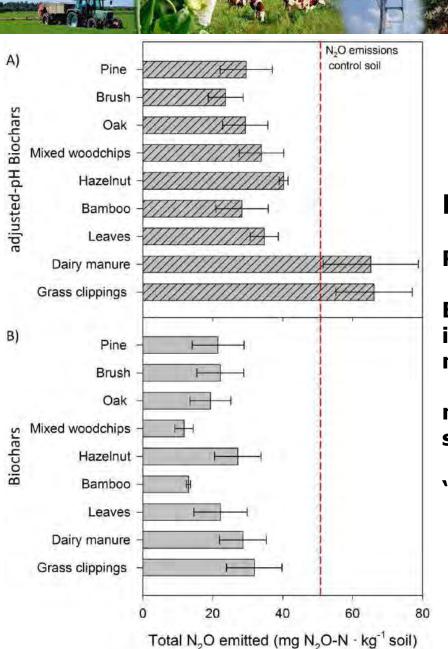
17-19 March 2014 PARIS

FP-biochar effect on N₂O soil emissions




What caused the reduced N₂O with addition of biochar to slurry?

DTU



Increased net adsorption of soil NO₃

17-19 March 2014 PARIS

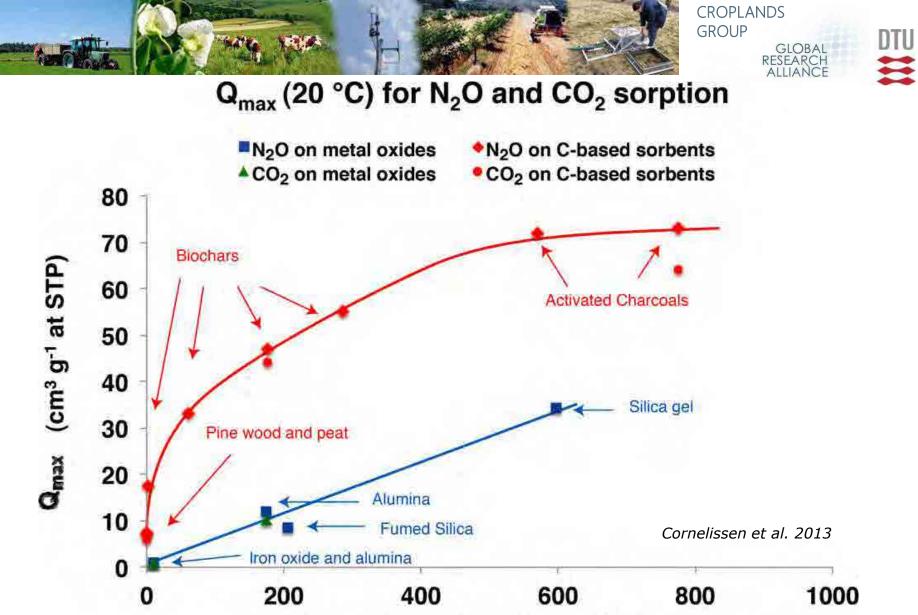
BC increases pH

Reduction of the $N_2O/(N_2+N_2O)$ ratio

CROPLANDS

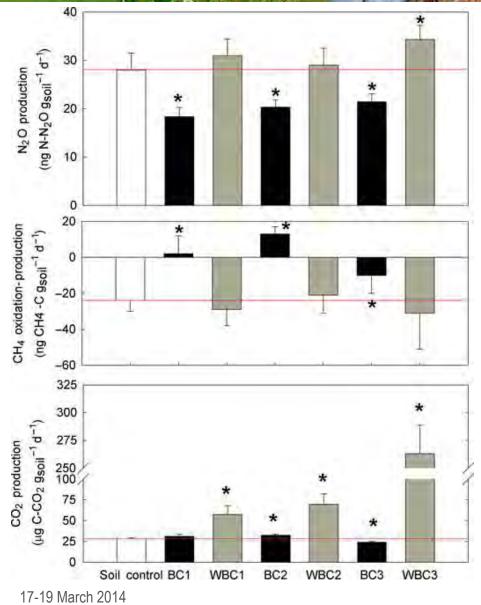
ON AGRICULTURAL GREENHOUSE GASES

GLOBAL


GROUP

Biochar acid buffer capacity was identified as an important aspect for mitigation

not primarily caused by a pH shift in soil


`electron shuffle' effect

Cayuela et al. 2013

N₂-BET Surface Area (m² g⁻¹)

Age is important

Aging negates the biochar effect

Spokas 2013

PARIS

Majority of studies show decreased N₂O emission with BC

A universal conclusion cannot be reached

what makes a biochar able to mitigate N2O emissions what type of char/feedstock management

Nitrogen availability

Adsorption-desorption; N-source; N-mineralization

Organic carbon availability

• Labile components

Oxygen availability

• Soil texture, soil WHC; biological activity

Physio-chemical environment

• pH, temperature

17-19 March 2014 PARIS

Thanks for your attention!

THE PROBLEM OF ASH DISPOSAL?

CROPLANDS GROUP GLOBAL RESEARCH ALLIANCE ON AGRICULTURAL GREENHOUSE GASES

Contributors PhD Esben Wilson Bruun Dr Dorette Müller-Stöver Dr Henrik Hauggaard-Nielsen

Tech staff Nina Wiese Thomsen Anja Nielsen

17-19 March 2014 PARIS

Short presentation

Simulating the impacts of management practices on nitrous oxide emissions from cropland soils

Mohamed Abdalla_{1,2}, Pete Smith₁, Mike Williams₂ and Mike Jones₂

1Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK

2Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

objectives

• To investigate the effectiveness of different management systems to mitigate nitrous oxide emissions from arable system.

- i- Effectiveness of Reduced N
- ii- Effectiveness of Reduced tillage
- iii- Effectiveness of Reduced tillage-Cover crop

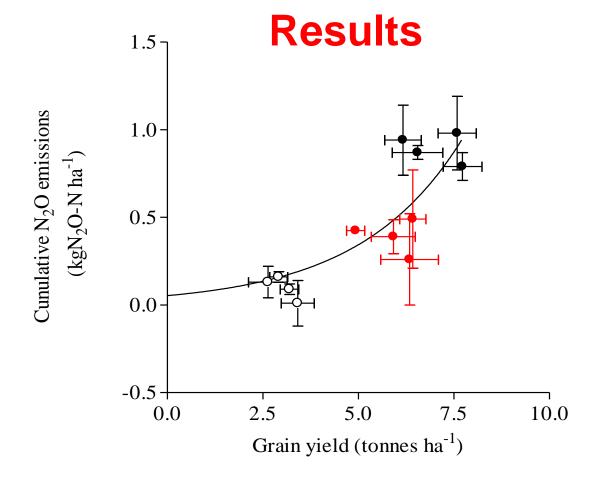
Workshop "Experimental databases and model of N₂O emissions by croplands: do we have what is needed to explore mitigation options?"

Materials & Methods

Field management dates for conventional and reduced tillage/cover crop systems during the experimental period.

Operation	Treatment date (day/month)		
	Reduced tillage-cover crop	Conventional tillage	
Ploughing	18-27/8	18-25/2	
Sowing	9-19/3	9-19/3	
Fertilizer application	13-21/4 & 7-22/5	13-21/4 & 7-22/5	
Sowing cover mop	8/8-13/9	-	
Harvesting	5-21/8	5-21/8	

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands: do we have whatPARISis needed to explore mitigation options?"


Results

N ₂ O emissions (kg N ₂ O-N ha ⁻¹)				Rd (%)
First year	Treatment	Observation	Model	
Conventional tillage	140 kg N ha ⁻¹	0.788 a	0.780	-1
	70 kg N ha ⁻¹	0.269 b	0.350	+30
	0 kg N ha ⁻¹	0.002 c	0.110	+ >100
Reduced tillage	140 kg N ha ⁻¹	0.978 a	0.590	-40
	70 kg N ha ⁻¹	0.494 b	0.220	-55
	0 kg N ha ⁻¹	0.087 c	0.030	-66
Second year				
Conventional tillage	160 kg N ha ⁻¹	1.053 a	0.993	-6
	80 kg N ha ⁻¹	0.563 b	0.450	-20
	0 kg N ha ⁻¹	0.170 c	0.110	-35
Reduced tillage	160 kg N ha ⁻¹	1.058 a	0.793	-25
	80 kg N ha ⁻¹	0.567 b	0.320	-44
	0 kg N ha ⁻¹	0.135 c	0.010	-93

•Measured EFs: 0.4 to 0.7%, whilst modeled EFs: 0.3 to 0.6%

Abdalla et al. (2009)

•Exponential correlation: $y = 0.053 \times e0.373x$, $(r^2 = 0.69)$.

•Reducing the applied nitrogen fertilizer by 50 % reduce N_2O emissions by 57 % but only 16% of grain yield.

Results

Table: Observed and simulated cumulative N_2O from RT-CC and CT over the experimental period.

Treatment	Cumulative N2O emission (kg N ha-1)			
	Observation Model		Relative deviation (%)	
Reduced tillage-	cover crop	_		
140 kg N ha ⁻¹	2.42 a	1.56	-36	
70 kg N ha^{-1}	2.17 a	0.91	-58	
0 kg N ha^{-1}	0.87 b	0.76	-13	
Conventional till:	age			
140 kg N ha ⁻¹	1.74 a	1.41	19	
70 kg N ha ⁻¹	1.37 a	1.01	-26	
0 kg N ha^{-1}	0.86 b	1.00	+16	

Different letters are significantly different from each other (p < 0.05)

CROPLANDS GROUP GLOBAL RESEARCH ALLIANCE

Results

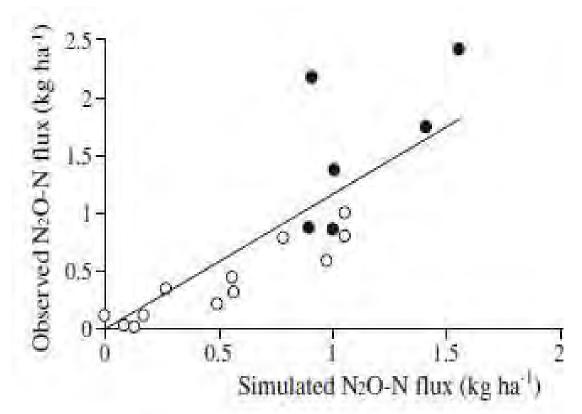


Fig.: Linear regression relationship between the model simulated and observed cumulative N₂O fluxes. Data of the reduced and conventional tillage plots from this study (filled circles) and from Abdalla et al. (2009) (open circles) were pooled together, y = 1.2x and $r^2 = 0.70$

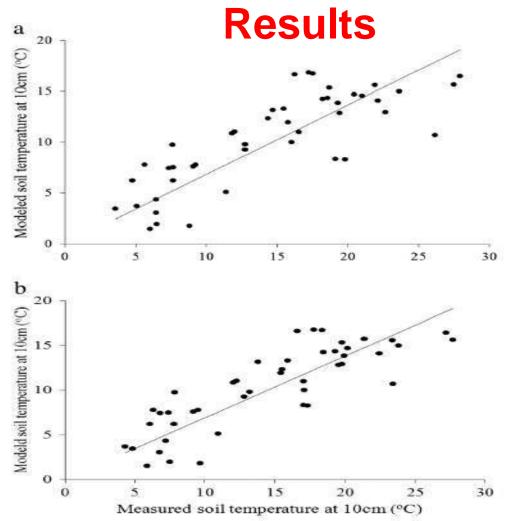
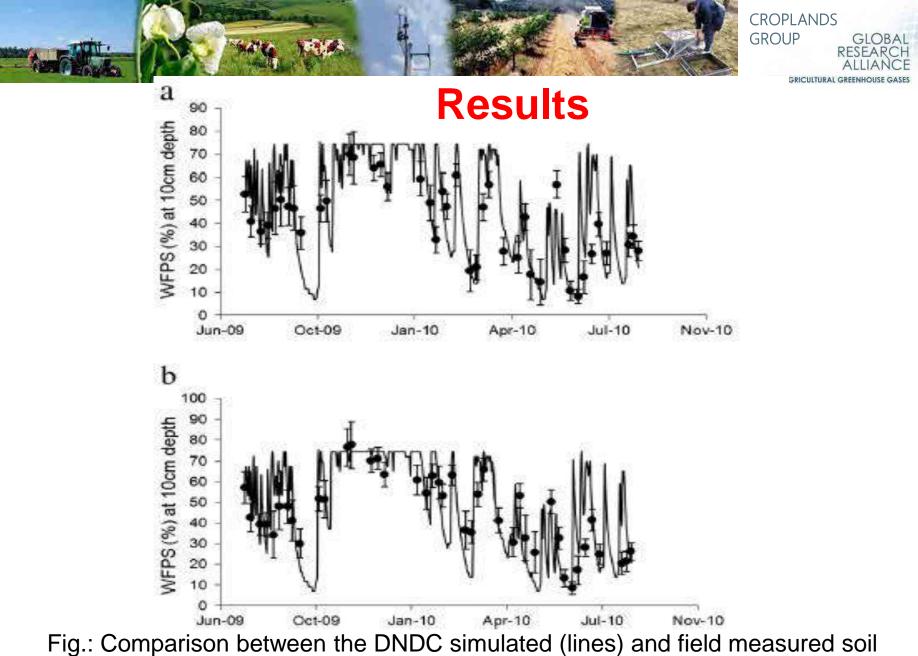
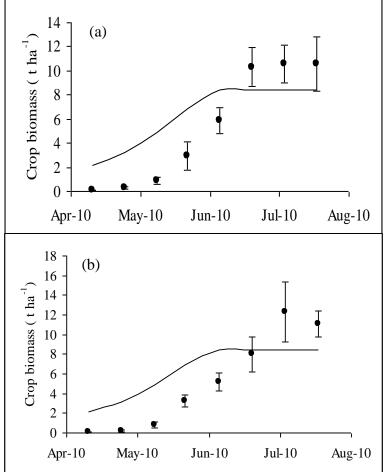



Fig.: Regression relationships (1:1) between the field daily mean measured and DNDC simulated soil temperature (10 cm depth) from the conventional (a; y = 0.5x+ 2.4 and $r^2 = 0.65$) and reduced tillage/cover crop (b; y = 0.6x + 1.7 and $r^2 = 0.7$).



(•)WFPS (10 cm depth) from the conventional (a) and reduced tillage/cover crop (b). Error bars for measured values are ±standard deviation. Abdalla et al. (2014)

GLOBAL

Results

Fig.: Comparisons between the DNDC simulated (lines) and field measured (•) crop biomass from the conventional (a) and reduced tillage/ cover crop systems (b).

17-19 March 2014 PARIS

Workshop "Experimental databases and model of N2O emissions by croplands: do we have what is needed to explore mitigation options?"

Results

Table: Comparisons between measured and simulated N₂O fluxes, biomass production (t C ha⁻¹), average soil nitrate, temperature and WFPS (at 10 cm depth) for the CT and RT-CC. For column, values with different letters for the same gas are significantly different from each other (P<0.05).

		Annual N_2O fluxes (kg ha ⁻¹), biomass production (t ha ⁻¹) and average soil nitrate (kg ha ⁻¹), temperature (° C) and WFPS (%).				
Measured	Modelled	RD	RMSE	MAE	r^2	
ge						
3.8 a	0.96	75	0.01	0.0	0.01	
4.2	4.0	- 6	0.8	1.7	0.29	
19.2	52	+>100	8.0	29	0.52	
14.5	11.7	-20	0.9	-4.5	0.65	
43	45	+3	2.0	0.9	0.64	
5.3 b	1.1	77	0.0	0.0	0.01	
4.4	4.0	-10	0.8	1.7	0.26	
23.0	31.6	+37	5.0	23.0	0.39	
14.6	11.7	-19	0.8	-4.5	0.70	
44	45	+1	2.0	0.4	0.61	
	4.2 19.2 14.5 43 5.3 b 4.4 23.0 14.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.8 a 0.96 75 4.2 4.0 -6 19.2 52 $+>100$ 14.5 11.7 -20 43 45 $+3$ $5.3 b$ 1.1 77 4.4 4.0 -10 23.0 31.6 $+37$ 14.6 11.7 -19	3.8 a 0.96 75 0.01 4.2 4.0 -6 0.8 19.2 52 $+>100$ 8.0 14.5 11.7 -20 0.9 43 45 $+3$ 2.0 $5.3 b$ 1.1 77 0.0 4.4 4.0 -10 0.8 23.0 31.6 $+37$ 5.0 14.6 11.7 -19 0.8	3.8 a 0.96 75 0.01 0.0 4.2 4.0 -6 0.8 1.7 19.2 52 $+>100$ 8.0 29 14.5 11.7 -20 0.9 -4.5 43 45 $+3$ 2.0 0.9 4.4 4.0 -10 0.8 1.7 23.0 31.6 $+37$ 5.0 23.0 14.6 11.7 -19 0.8 -4.5	

Abdalla et al. (2014)

GLOBAL

Conclusions

•The DNDC model can be successfully applied to estimate N_2O emissions under different management systems however, some model-limitations need to be addressed.

•Reducing N fertilizer by 50% is an acceptable strategy for low input agriculture in that there was no significant effect on grain yield or quality.

•The use of RT-CC as an alternative farm management system for spring barley, if the sole objective is to reduce N_2O emissions, may not be successful.

Short presentation

Simulation of the effect of some management practices on N₂O emissions using the STICS model (preliminary results)

Joël Leonard N. Brunet, C. Gaudnik, E. Gréhan, B. Mary, C. Peyrard

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

Main variables simulated

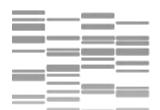
Crop growth (with generic crop representation); dynamics of water, nitrogen, carbon in plant and soil

Management practices

- Complex rotations: cover crops, intercropping, leguminous crops; possible to connect sequences
- N inputs (mineral, organic): amount, form, depth, timing ; crop residues restitution/exportation
- Soil tillage/soil structure (mixing, compaction), mulch effect
- Irrigation, drainage/saturation

N_2O

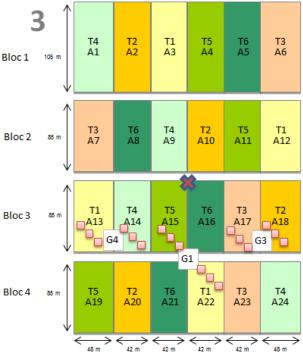
- Nitrification and denitrification
- N₂O emissions associated to both processes
- Approach: potential modulated by substrate availability (NO₃, NH₄) and environment (T, water and O₂ via WFPS, pH) (Bessou et al., EJSS, 2010)


<u>Field experiment</u>

- **SOERE ACBB', arable crops site, Estrées-Mons, France**
- Some of the main practices used to reduce the environmental impacts of cropping systems are represented
 - » Reduction of tillage
 - » Residues management
 - » Reduction of nitrogen inputs
 - » Cover crops / leguminous crops

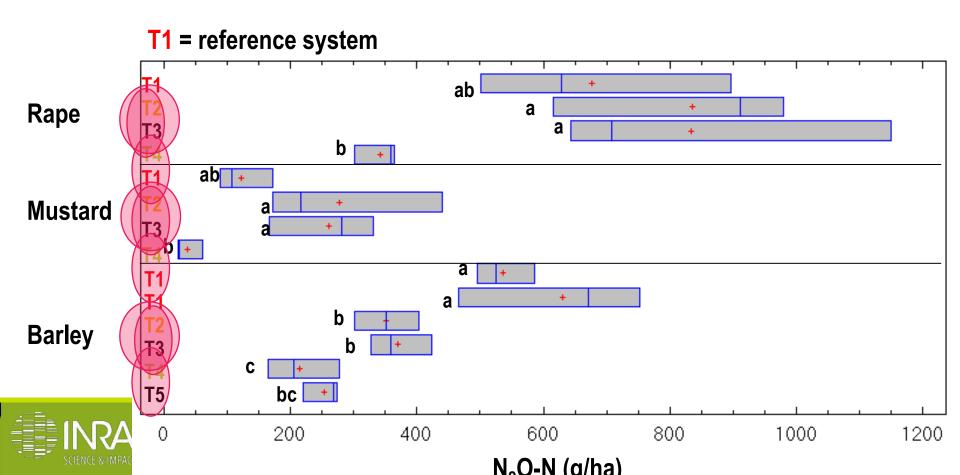
Possible comparisons of treatments by pairs

Experimental Treatment	Crop Rotation	Soil Tillage	Crop residues	Nitrogen Inputs	Cover crop
Conventional tillage	Spring Peas, Winter Rapeseed, Winter Wheat, Spring Barley, Corn, Winter Wheat	Conventional	Straw Incoporation	Integrated production	Non legume
Reduced tillage	Spring Peas, Winter Rapeseed, Winter Wheat, Spring Barley, Corn, Winter Wheat	Reduced	Straw Incoporation	Integrated production	Non legume
Reduced tillage & Straw exportation	Spring Peas, Winter Rapeseed, Winter Wheat, Spring Barley, Corn, Winter Wheat	Reduced	Straw Removal	Integrated production	Non legum
Low Nitrogen Inputs	Spring Peas, Winter Rapeseed, Winter Wheat, Spring Barley, Corn, Winter Wheat	Conventional	Straw Incoporation	Low Mineral Inputs	Non legum
Ecological Intensification	Spring Peas, Winter Rapeseed. Winter Wheat, Spring Barley, Corn, Winter Wheat	Conventional	Straw Incoporation	Low Mineral Inputs	Legume
Integration of biomass crops	Switchgrass (duration 8 years) Spring Peas, Winter Rapesed Winter Wheat, Spring Barley Com, Winter Wheat	Conventional	Straw Removal	Integrated production	Non legum

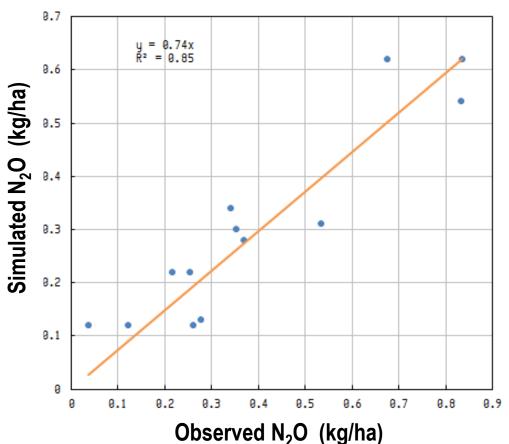


Continuous N₂O measurements

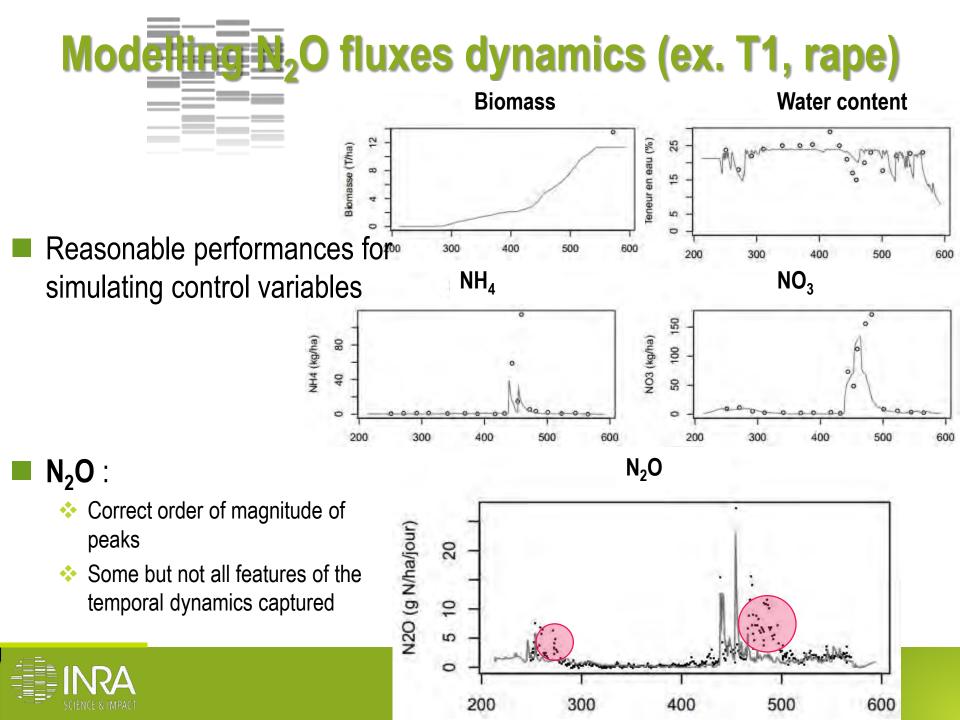
- 3 Automatic chambers per plot, block replicate for one plot
- Rapeseed- Mustard Barley 2011-2013 (603 days)
- Measurements of soil nitrogen, soil water, soil temperature, biomass...
 - Model initialization
 - Model evaluation : check control variables



- Contrasts between crops, but for part explained by varying crop cycle duration
- Reduction in fertilization is the major effect (T4 vs. T1)
- Reduced tillage effect variable (T2 vs. T1, consistent with other results)
- No effect of residues management (T3 removed vs. T2)



No calibration


- Main variations captured
- Underestimation of simulated emissions

Nitrification supposed (from model results) to be the main source of N_2O (77% of total)

Cumulative observed and simulated N₂O emissions, by treatment and crop

Simulation of the effect of fertilization

0,9

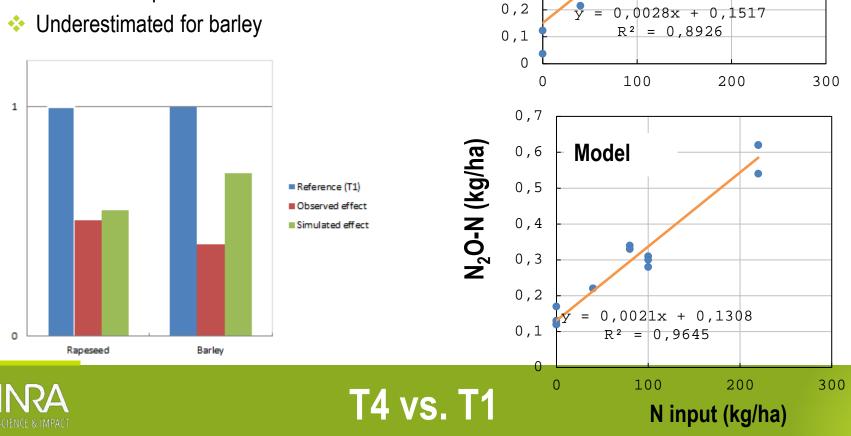
0,8

0,7

0,6

0,5

0,4 0,3


N₂O-N (kg/ha)

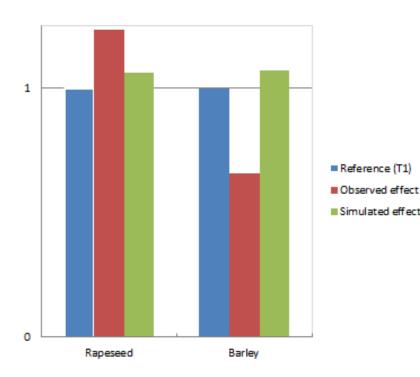
Observations

Correct order of magnitude: 0.21% N vs. 0.28% N << 1% IPCC</p>

Relative effect

Correct for rapeseed

Simulation of the effect of reduced tillage

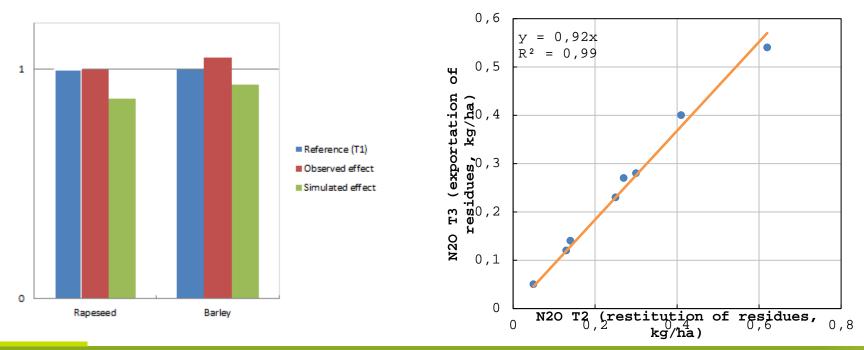

T2 vs. T1

Measured emissions

- a bit higher for rapeseed, significantly lower
 for spring barley
- Only absence of ploughing on T2/T1, same superficial tillage operations than on T1

Modelled emissions:

- Slight increase in N₂O emission if small increase in soil bulk density taken into account
- No difference if the bulk density remains the same (despite mixing effect of ploughing on mineral nitrogen concentration and water content)



Simulation of the effect of crop residues restitution

No significant difference for observed emissions

Tendency to have slightly lower simulated emissions when residues are exported

-13 % on rapeseed following wheat with straw removed or not

T3 vs. T2

Observed differentiation between treatments is still limited after 3 years

- Nitrogen input remains the main effect, rather small EF
- → Little differentiation in soil physical conditions
- Reasonable performance of STICS (order of magnitude, dynamics) despite absence of calibration
- Possible to simulate the effect of the different treatments, but :
 - more contrast between treatments for observed emissions than for simulated one
 - Simulations sometimes not consistent with observations (tillage)

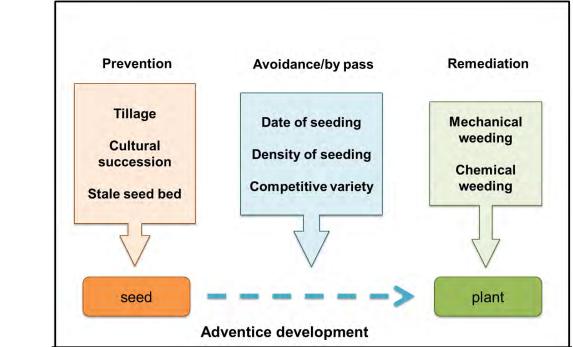
➔ Useful to isolate the effect of a given practice, because poor simulation performance for this practice can be hided by another dominant practice such as N input

Short presentation

Impacts of integrated weed management in cropping systems on N₂O emissions from soil

A. Vermue, <u>C. Hénault</u>, A. Coffin, N. Munier-Jolain, B. Nicolardot

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"



Integrated Weed Management (IWM)

Definition

To reduce the reliance of cropping systems on herbicide, with limited environmental, economic and social impacts

By the use of specific combinations of innovative agricultural practices

• Means

17-19 March 2014 PARIS

Objectives of the study

➡ To measure N₂O emission (together with ancillary variables) in cropping systems that includes some IWM systems

➡ To analyse the collected databa with a modelling approach (NOE algorithm, Henault *et al.*, 2005)

17-19 March 2014 PARIS

CROPLANDS GROUP GLOBAL RESEARCH ALLIANCE

The Experimental Site

Eastern France (Dijon) – Semi-continental climate Calcisoil (with spatial heterogeneity)

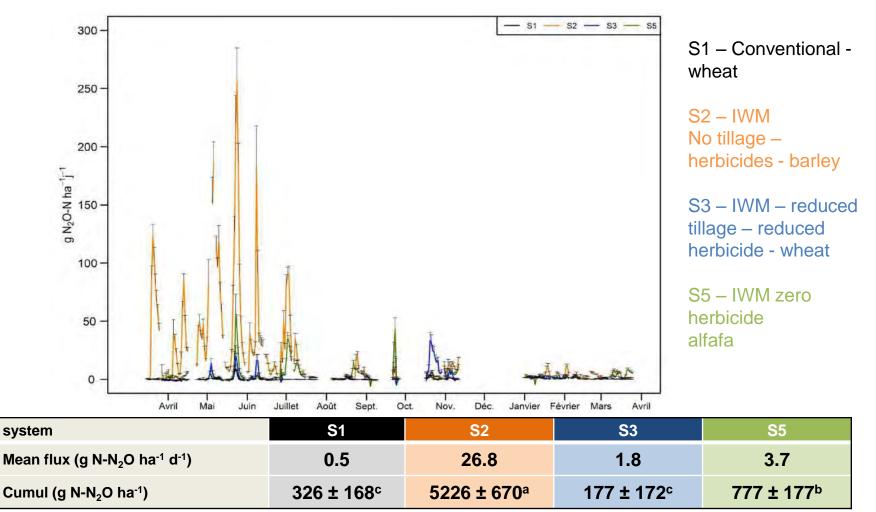
IWM : started in 2000

Crop system	S1	S2	S3	S5
Type of system	Reference	IWM	IWM	IWM
Specific agricultural practices	Conventional	Minimum tillage (2000-2007) . No tillage from 2008 Plowing, harrowing, mechanical weeding excluded	Mechanical weeding excluded Tillage operation allowed when necessary	Mechanical weeding and plowing allowed
Treatment frequency index	2,4	2,0	1,4	0
Plowing frequency	1 / year	-	0.4 / year	0.5 / year
Crop Rotation	Wheat/barley/rape	diversified	diversified	diversified
Mean annual fertilisation (kg ha ⁻¹)	178	133	103	130

17-19 March 2014 PARIS

Specific Field Measurements

(April 2012 – April 2013)

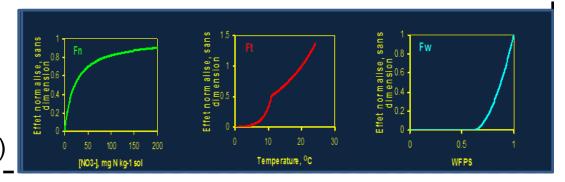

- 6 automated chambers per plot coupled to IR analyser
- 4 TDR and thermistor probes per plot
- Periodical measurements of nitrogen contents and of bulk density

17-19 March 2014 PARIS

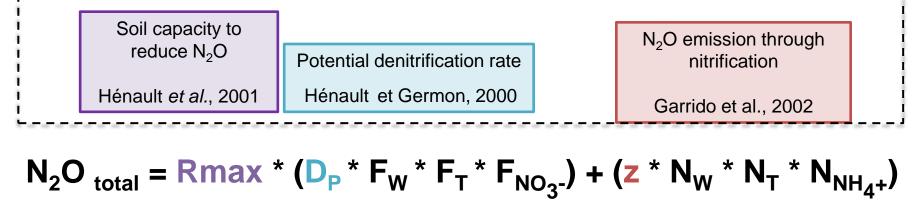
CROPLANDS GROUP GLOBAL RESEARCH ALLIANCE ON AGRICULTURAL GREENHOUSE GASES

Results of measurements

17-19 March 2014 PARIS Workshop "Experimental databases and model of N₂O emissions by croplands:

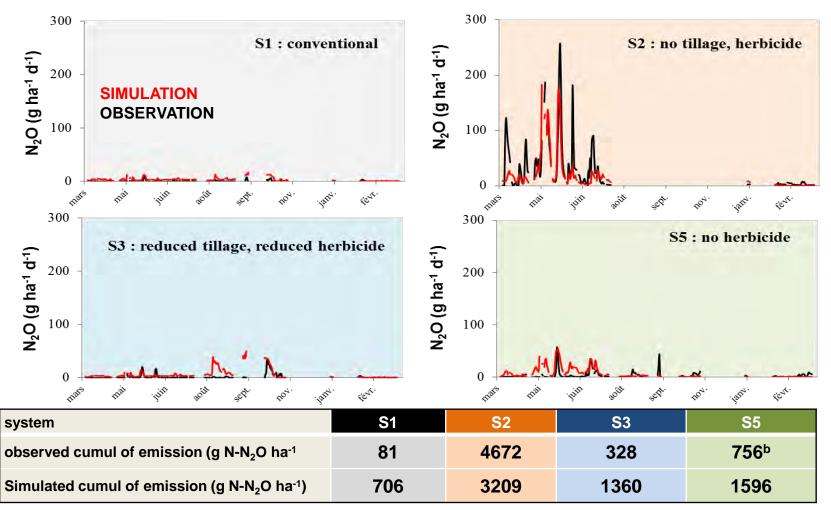

do we have what is needed to explore mitigation options?"

The NOE Algorithm (Hénault et al., 2005)


Environmental fonctions

- Temperature (F_T , N_T)
- Soil moisture (F_W, N_W)
- Soil nitrogen (F_{NO_3} , N_{NH_4})

Nitrification


Biological parameters

Denitrification

Results of simulations

17-19 March 2014 PARIS Workshop "Experimental databases and model of N_2O emissions by croplands:

do we have what is needed to explore mitigation options?"

Main Conclusions

- ⇒ Impact of IWM system on the intensity of N₂O emission : higher N₂O emission in the « no-till » IWM system during 2012-2013 (more investigations are required because of (1) possible interactions between soil variability and IWM and (2) temporal effect))
- ⇒ The algorithm NOE was able to discriminate the N₂O emission intensity between the different IWM systems
- ⇒ The analysis using NOE suggests that higher emissions on the « no-till » IWM system are due to :
 - higher potential denitrification rate
 - higher soil WFPS (soil moisture, bulk density)

Short presentation

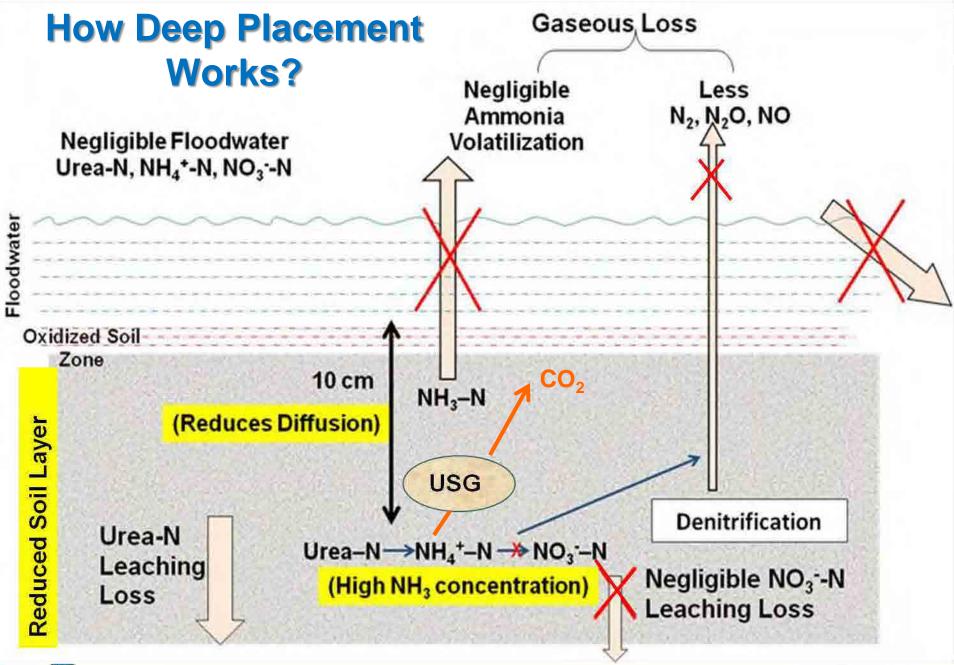
Quantifying N-Emissions losses with Water and Nitrogen Management from Rice Paddy fields

Yam Kanta Gaihre

17-19 March 2014Workshop "Experimental databases and model of N2O emissions by croplands:
do we have what is needed to explore mitigation options?"

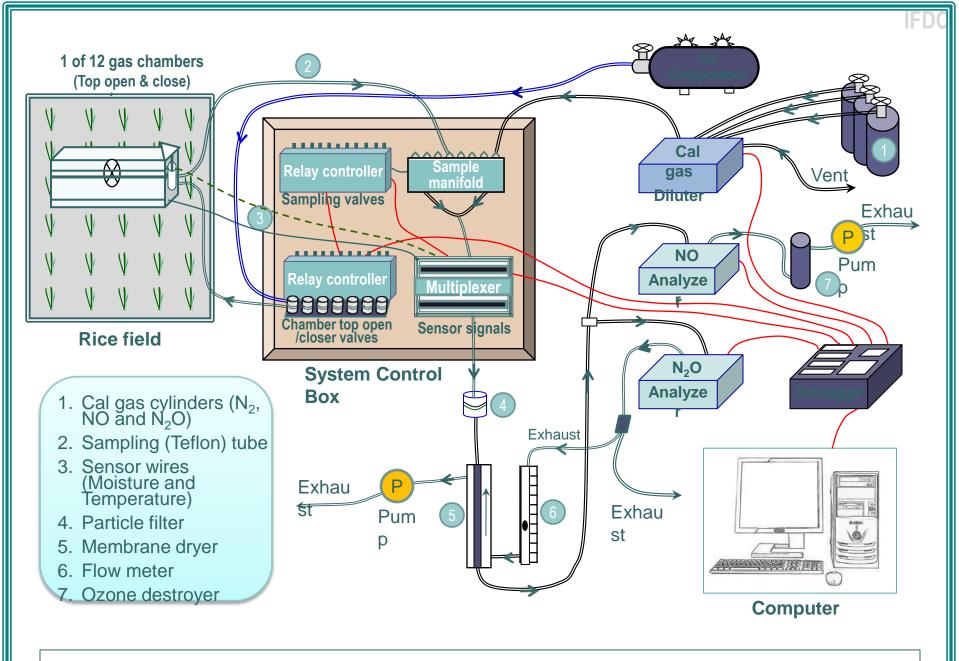
Materials and Methods

- Water management
 - Continuous standing water (CSW)
 - Alternate wetting and drying (AWD)
- Nitrogen management
 - Surface broadcast (split application)
 - Urea deep placement (5-7 cm between 4 hills of rice at the alternate rows)


Prilled Urea

Urea Briquettes

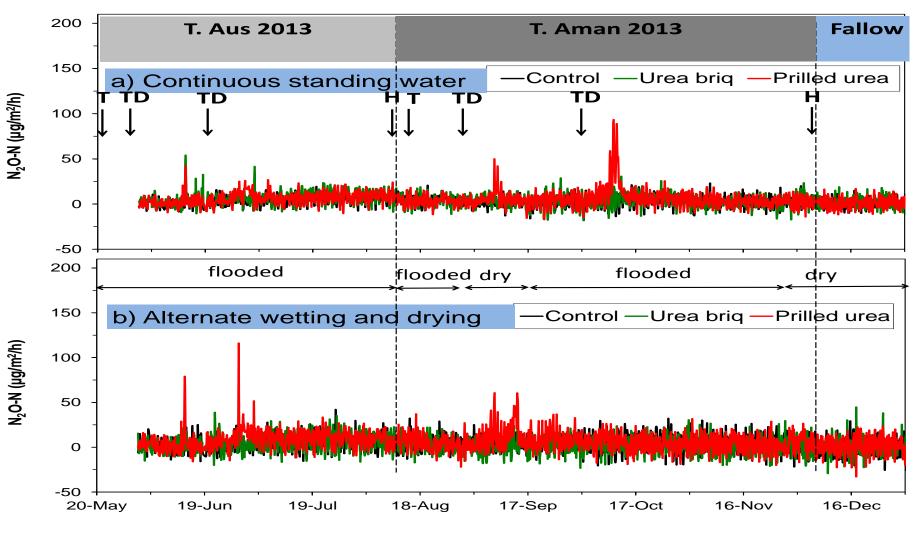
www.ifdc.org


www.ifdc.org

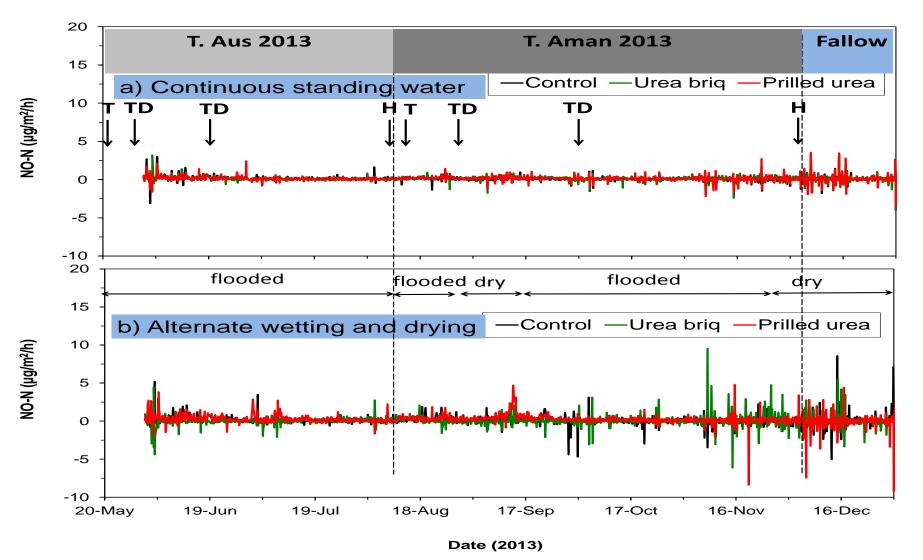
Methodology

- Automated continuous measurement
 - N₂O (Gas Filter Correlation N₂O analyzer, Model T320U, Teledyne API)
 - NO (Chemiluminescence NO-NOx Analyzer, Model T200, Teledyne API)
- * Data recorded using CR3000 (Campbell Scientific)
- * Each chamber (57.1 liter) is sampled 8 times a day (3 hour interval)
- Chamber remains closed only for 40 minutes during each sampling time

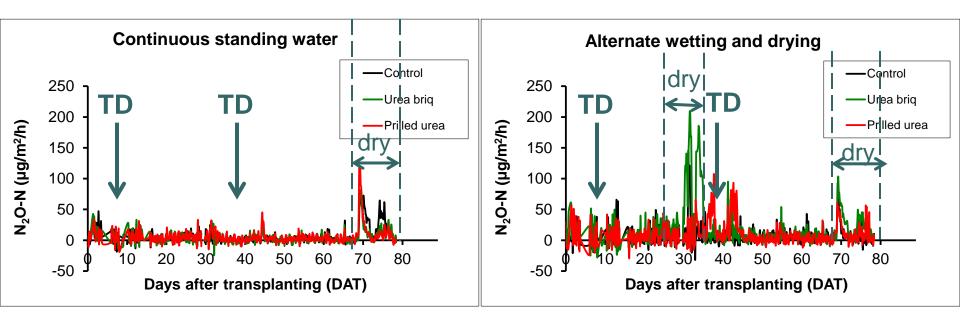
Schematic diagram of automated gas (N₂O and NO) sampling and analysis system



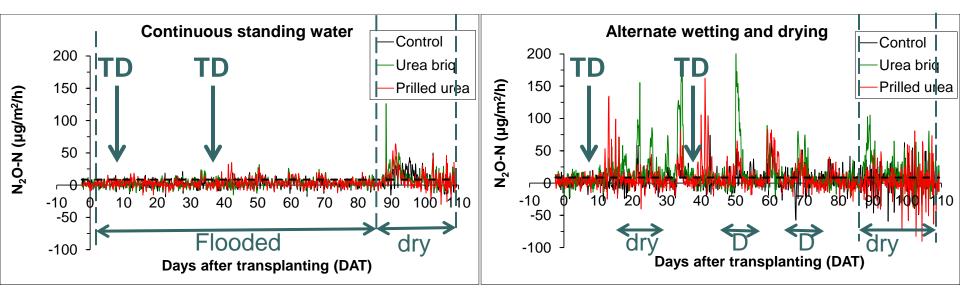
- Two locations in Bangladesh
 - Bangladesh Agricultural University (BAU)
 - Bangladesh Rice Research Institute (BRRI)
- Growing season
 - T-Aus (Wet season, June-August)
 - T-Aman (Wet season, August-Nov)
 - Boro (dry season, Jan-April)



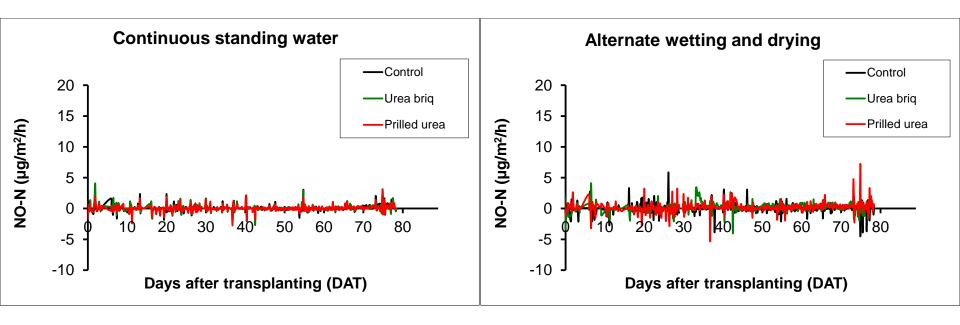
N₂O emissions at BAU



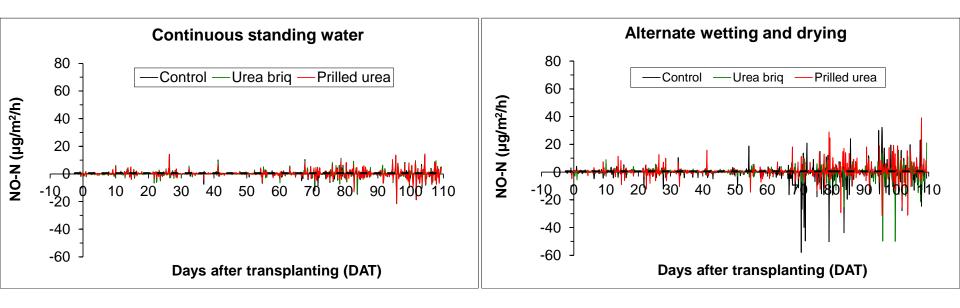
NO emissions at BAU


N₂O: Aus 2013

www.ifdc.org

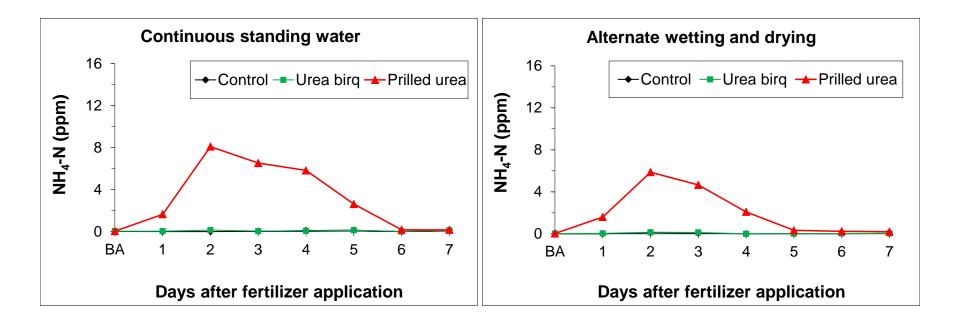

N₂O: Aman 2013

www.ifdc.org


NO: Aus 2013

www.ifdc.org

NO: Aman 2013


www.ifdc.org

Conclusions

- N₂O and NO emissions are negligible under CSW, while significant emissions occurred under AWD.
- However, emissions peaks appeared after broadcast application of urea but not from deep placement.
- ✤ Deep placement increased emissions under AWD.
- Ongoing Boro (Dry season) trials will provide crucial information on effect of AWD and N management on emissions.

Ammonium-N in floodwater

Experimental databases and model of N₂O emissions by croplands Do we have what is needed to explore mitigation options?

Concluding remarks

17-19 March 2014 PARIS

N₂O emissions by agricultural soils

- Complex, not fully elucidated underlying processes
- Very small fluxes, highly variables in space and time
- Numerous shortcomings about measurement techniques
- Remaining knowledge gaps (e.g. N₂O consumption, multiple processes...)
- Progresses are expected from new tools (isotopes, molecular biology,...)
- Better understanding of underlying processes will probably help to improve models so that they better account for the effect of management practices, but it remains debatable

Effect of agricultural practices on N_2O emissions and levers for mitigation

- This question has received attention from agronomists only recently
- The metrics which is used to compare agricultural practices is a key issue (area-scaled N₂O? Yield-scale N₂O?,...)
- Important to have complete N budget data and other GHG. Important to consider (multi)year round measurements
- Some levers for mitigation have been clearly identified (reduce N excess, legumes, cover crops,...).
- Need for synthetic papers, for the most widely studied practices (*e.g.* N fertilisation)
- Some techniques, which may offer levers for mitigation in the mid-term, need further studies (e.g. fertiliser placement, biochars, liming, ...)
- The biodegradation of organic products (crop residues, manure) and associated N₂O emissions must be better understood
- The effect of highly disturbing management practices (land use change) or events (freeze-thaw) must be quantified
- We need more studies in dryland contexts
- There is a strong need to design and assess cropping systems with a multicriteria approach (not only GHG but also crop production, reduced use of pesticides,...)

Models

- Models are definitely an appropriate tool
 - to decipher the relative effects of soil properties, climate, agricultural management practices;
 - to interpret and compare data from different experiments;
 - to make prediction
- They don't work so bad
- Process based model (e.g. DNDC, Daycent, Stics,...) successfully simulate the effect of several key agricultural practices, although not always the accurate temporal dynamic. Clarify how they do the job ?
- We should not fear model failure
- Could we still improve synergy between data collection and modelling efforts in a winwin process
 - For experimentalists: Better interpretation of their results
 - For modellers: Model evaluation in a wider range of contexts
 - But intermediate variables should be measured (e.g. NO₃⁻, NO₂⁻, WFPS) and how model account for the effect of management practices must be made more transparent
- Models don't simulate long term, cumulative effects of cropping systems on important variables (pH, soil porosity,...)
- Upscaling at large scale (which is the relevant scale for policy making) is an important objective

What will happen now?

- Workshop 2 will start just after. The key word is model intercomparison.
- Ppt presentation will be available on the GRA website (if authors agree for that)

Thanks to

The key-note speakers and authors of oral presentations and posters for their contributions

- Chairs and co-chairs
- Members of the scientific and organisation committee
- INRA and Ademe for financial support
- Fiona and Lénaic for practical organisation
- All of you for active participation in discussions