

Development of standards for protecting the climate from the adverse effects of animal farming

Jacek Walczak, Dorota Godyń, Wojciech Krawczyk

Department of Technology, Ecology and Economics of Animal Production ul. Krakowska 1, 32-083 Balice n. Kraków, Poland

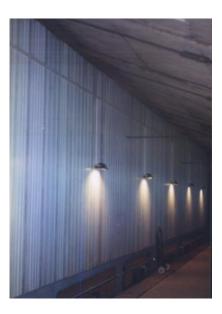
Plan of the presentation

- General Information
- Research facilities of the Institute
- Results of our research
- Emissions from basic animal housing systems
- Technologies to reduce the emission
- Proposed categories of actions to reduce GHG emissions and Carbon Food Print from animal production
- Expectations and needs for research and implementations

General information

The National Research Institute of Animal Production in Kraków-Balice, founded in 1950, is the largest institute in the agricultural sector serving the whole country. The Institute is engaged in research and development work, which comprises the breeding of all species of farm animals and the entirety of animal production issues.

Livestock breeding, like all forms of agriculture, is directly related to the natural environment. The intensification production methods has led to progress but it can also cause contamination and degradation as well as climate change.


Research facilities of the Institute

Microclimatic chambers

• The studies on animals were performed in six microclimatic chambers with full computerised environment control system.

Unique equipment of the chambers

• The microclimatic chambers were located in a single building equipped with heating and cooling systems. Every chamber was supplied from a separate ventilation duct whose inlet was located outside the building, beyond the discharge zone of worn-out air. The temperature in the building and chambers was maintained within the thermal neutrality range depending on the technological group examined. During individual repetitions gas concentrations were measured continuously using electrochemical and infrared probesand a gas chromatograph.

Field research – aerodynamic tunnels

Studies on fertilisers were done with the use of aerodynamic tunnels with a constant flow of air mass.

Our research results

Emissions from basic animal housing systems

The studies were performed on various technological groups of cattle, pigs, poultry, and fur bearing animals.

Level of GHG emissions from basic housing systems of various technological cattle groups (kg/year/head)

N. Cal			Housing	g system						
Gaseous	20 D		0.0	b B		stall				
compounds		Mill	Milk Cows							
			ep staw edding	•	Deep sawdust bedding					
metl	nane	1:	23,53	126	126,32					
	gen oxides	C),062	0,0	0,073					
- methane	100.4a0cu	112.91aeig	125.55Dem	120.320111	117.2ugij	X				
- nitrogen oxides	0.032aBCD	0.045aeFG	0.062BehI	0.073CFhJ	0.416DGIJ	X				
e - the			Heifers		The state					
- carbon dioxide	1944.6abd	1823.8aefgH	2078.3beijk	1924.5fil	1998.2gj	2129.7dHkl				
- methane	56.3BCde	57.4FGhi	79.32BFjkl	84.27CGjMN	66.73dhkMo	67.58eilNo				
- nitrogen oxides	0.015a	0.016fghi	0.019bfjkl	0.021cgjm	0.021cgjm 0.022dhkn					
and the second s	-10	and the second	Calves	50						
- carbon dioxide	X	X	1108.23ab	1046.3ac	X	987.8bc				
- methane	X	X	21.21ab	24.47ac	X	19.68bc				
- nitrogen oxides	X	X	0.006aB	0.004aC	X	0.003BC				

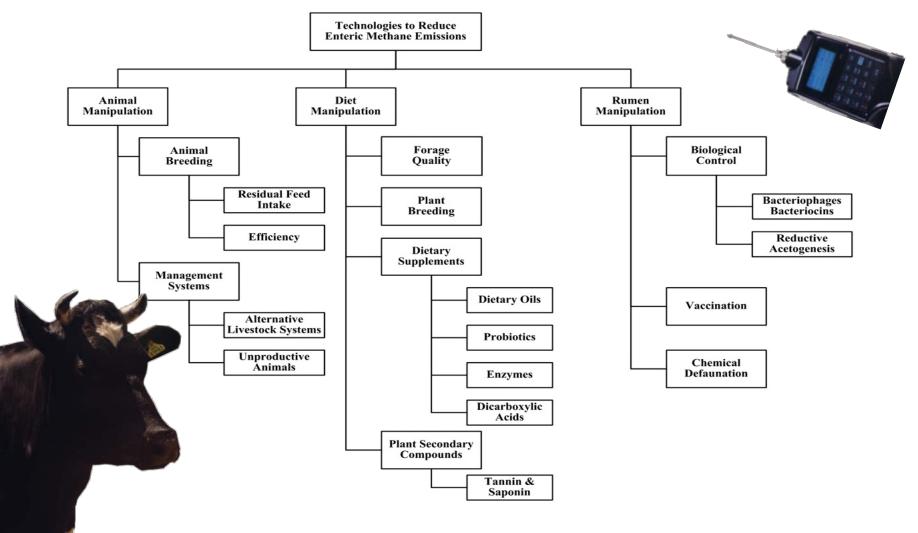
aa - statistically significant differences; AA, BB - highly significant statistical differences

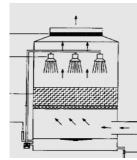
Level of gas emissions from basic housing systems of various technological pig groups (kg/year/head)

	Housing system									
Group/		- Du	Ji		Its					
Gases		SEM								
			Deep	litter	Slope floor	N N				
	methane (k	g/y/head)	1,5	3	0,42					
- H ₂ O ₂ - CO ₂ - NH ₃ - H ₂ S	nitrogen oxi (kg/y/head)	des	0,03	38	0,020	39,19 50,63 0,50 0,03				
- CH ₄ - NO _x		0,19 0,01								
- H ₂ O ₂ - CO ₂			Deep	litter	Slope floor	7,02 5,57				
- NH ₃ - H ₂ S - CH ₄	methane (k	g/y/head)	2,5	5	1,64	0,11 0,007 0,08				
- NO _x - H ₂ O ₂	nitrogen oxi (kg/y/head)	des	0,07	71	0,043	0,002 20,01				
- CO_2 - NH_3 - H_2S - CH_4 - NO_x	773,89a 2,93a 0,091A 1,91a 0,054a	728,91b 2,31b 0,084A 1,64a 0,043a	818,34c 3,67c 0,108B 2,5b 0,071b	797,89ac 5,24d 0,322D 2,25b 0,048a	c 748,60ab 2,89a 0,129AB 1,83a 0,039a	7,47 0,29				

Level of gas emissions from pigs waste managing places (kg/t).

		Solid waste						Liquid waste							
Gases	Manure - fattening pigs	Deep litter - fattening pigs	Manure - weaners	Manure – pregnant sows	Deep litter – pregnant sows	Manure – sows with piglets	Sllury – fattening pigs	Liquid manure - fattening pigs	Sllury - weaners	Liquid manure - weaners	Sllury - pregnant sows	Liquid manure - pregnant sows	Sllury - sows with piglets	Liquid manure - sows with piglets	
NH ₃	1,73aA	4,39bB	1,44cA	1,76aA	3,47dAB	2,76eAB	4,91fB	5,17gB	2,53eAB	2,93hAB	3,04hAB	3,30dAB	3,87iAB	3,40dAB	
NO _x	0,19aA	0,49bB	0,15cA	0,19aA	0,36dC	0,30dC	0,69eD	0,82fE	0,42bB	0,53gB	0,38dC	0,62eD	0,59gB	0,40bB	
CH ₄	6,93aA	10,92bB	9,59cB	8,73dAB	15,64eC	9,35cB	18,18fD	25,06gE	32,03hF	39,42iG	29,97јН	37,45kGI	25,731E	35,38mI	
H ₂ S	0,89aA	2,11bB	0,97cA	0.82aA	2,21bB	1,25dA	7,25eC	6,97eC	6,43fC	5,95gC	4,83hC	4,31iCD	5,43jC	5,04kC	
NMVOC	44,10aA	67,79bB	61,10cB	68,87bB	75,63dB	57,80eA	10,00fC	13,82gC	16,28hCD	24,80iD	14,73jC	19,71kCD	13,63gC	17,081CD	


 $ab-statistically\ significant\ differences\ (P{\le}0,05);\ AB-statistically\ highly\ significant\ differences\ (P{\le}0,01)$


Technologies to reduce enteric methane emissions

Research conducted by the Institute- possibility of reduction

Level of gas emissions from hens housing with different types of biofilters (kg/year/head).

S		Group									
Gaseous compounds	Without filtration	Filtration typ 1	Filtration typ 2	Filtration typ 3							
VOC	0,024	0,022	0,030	0,028							
NH ₃	0,33A	0B	0B	0B							
NO _x	0,109A	0,111A	0,105A	0,042B							
CH ₄	0,51	0,49	0,48	0,50							

NOx emissions from animal housing systems (kg/head/24h) with supplementation of different reduction methods

Group/Supplement	Тур	of animal produc	ction
	Cows	Fattening pigs	Broilers
Control	0,0014539Aa	0,000368Aa	0,0000527Aa
Ionization	0,0013422	0,000297	0,0000375
	Aa	ABab	ABCbc
CaCO ₃	0,0013751	0,000319	0,0000436
	Aa	ABab	ABab
Microphlora	0,0014966Aa	0,0001117Cc	0,0000542Aa
Zeolit	0,0012716Aa	0,0003907Aa	0,0000276BCcd
Feeding enzym	-	0,000217A	0,0000189B
SEM	0,0001	0,00002	0,000003

Our proposals for effective actions to reduce emissions and carbon footprint from animal production in Poland Perspective till 2050

Based on the results of research and technical feasibility of the farms, taking into account the increase in production costs and prices of materials, it was verified the following solutions

Proposed categories of actions to reduce ghg emissions In polish livestock breeding till 2050

Livestock - Antimethanogen vaccine

Vaccinating ruminants against methanogenic microflora of the rumen, like other activities aimed at de-faunisation or transformation of this ecosystem have been continued as a research topic since the 1960s.

Negative opinion - can not be applied in practice!

Livestock Feed Supplements

This category includes a very broad spectrum of activities pertaining chiefly to feeding dairy cattle. It results from very low levels of sheep stock, which has been covered by the activities aimed at protecting genetic resources (PROW), and low profitability of breeding beef cattle by extensive methods (grazing on pastures). The activity includes applying both permitted feed supplements in the forms of probiotics, enzymes, acidifiers, tannins, oils, and also such additives which increase the digestibility of fodder.

Positive opinion - low cost, high potential practical implementation.

A STATE OF A STATE OF		1. 2.	52 4	all she	A-MACON	m let	Constant of		
Name				Ye					Type of
Technology	2011/1	2016/2	2021/2	2026/3	2031/3	2036/4	2041/4	2046/5	installations
of activity	5	0	5	0	5	0	5	0	/units
			Lives	tock Feed	Suppleme	ents			
Maximum									Thousands
number of									
installations	90,0	150,0	220,0	270,0	300,0	340,0	400,0	470,0	
Initial capital									euros
expenditure	670	630,0	600,0	570,0	540,0	500,0	470,0	440,0	
Sectors									
providing				70% agric	ulture, 30	% other se	ervices		
goods and									
services	<u> </u>								1
Gross									euros
operational	1050	1070.0	1000.0	1000.0	1700.0	1720.0	1740.0	4750.0	
expenditure	1650	1670,0	1680,0	1690,0	1700,0	1720,0	1740,0	1750,0	
Savings	0	0	0	0	0	0	0	0	euros
Net capital	1050	1070.0	1000.0	1000.0	1700.0	1720.0	1740.0	4750.0	euros
expenditure	1650	1670,0	1680,0	1690,0	1700,0	1720,0	1740,0	1750,0	
Sectors providings					100% agrie	sulturo			
goods and					100% agri	Luiture			
operational									
services									
El. energy	0	0	0	0	0	0	0	0	euros
savings	Ŭ	Ŭ	Ŭ	Ŭ	^o	U U	Ŭ	Ŭ	24105
Fuel savings	0	0	0	0	0	0	0	0	t
Emission	Ť	Ŭ	ÿ	Ŭ	Ŭ	Ű	Ŭ	Ŭ	t of CO _{2e}
reduction	0,32	0,32	0,36	0,36	0,39	0,39	0,41	0,41	2 31 2 3 2e

This category includes not only feed supplements but also quality of fodder and its compositions. It pertains to dry mass content and supplements: oils, probiotics, enzymes, and tannins. Applying papilionaceous plants in feeding, improvements in digestibility, or feeding young grass or ground grains of oil plants results in a similar effect in reducing methane. Using antibiotics, de-faunisation, or analog compounds is ruled out.

Breeding, productivity effectiveness and animals longevity

The scope of activities including genetic improvement of livestock i.e. breeding progress will be of principal importance for Polish agriculture for a minimum of 30 or more years. The data provided by Eurostat show the great discrepancy between the productivity of Polish breeds of ruminants compared with the state in EU-15 countries. The progress is forced by macroeconomic factors and is of intrinsic nature.

Positive opinion – possibility of implementation but in long term.

Housing and storage, biogas production

Activities in the area of technology of rearing animals, storing faeces, and the production of agricultural biogas cover not only ruminants but also poultry and pigs. The last two species are taken into account in terms of faeces and biogas production, and these were converted per hypothetical cow (large conversion unit).

Positive opinion- the high cost of implementation, offer for large and modern farms.

Name				Ye	ars				Type of	1
Technology	2011/1	2016/2	2021/2	2026/3	2031/3	2036/4	2041/4	2046/5	installations	
of activity	5	0	5	0	5	0	5	0	/unit	
	I	Breeding,	productiv	ity effecti	vness and	animals	longevity			1
Maximum									Thousands	
number of										
installations	200	240	290	330	380	430	490	530		
Initial capital									euros	
expenditure	110	120	140	150	170	180	200	210		
Sectors										
providing				10	00% other	services				
goods and										
operational							A.A.	and the second	A CONTRACTOR OF IT	
services						d'al	Sugar	2 March March	State State	1
Gross						10 M	1999	12.45	euros	
operational					(2)		m	125	The star	1. S. S. S.
expenditure	210	240	270	290	310	330	350	370		3.6
Savings	0	0	0	0	0	0	0	0	euros	1.00
Net capital			S 14	Ame	1 N		1.11	FIDE	euros	1.3
expenditure	210	240	270	290	310	330	350	370	State of the second	1.2.2
Sectors	125	1 13	Ser Sala	THE REAL PARTY	A ST			Sec. 1		4
providing	2 14		CH KOBO	Contraction of the	100% agri	culture	1000			3
goods and	1		10		ARE N	MHS 75	100	1111		
operational	1.1		12.14	100	ALL Y	1154	1.0.07	14 A.	A CONTRACTOR	
services	5 0	E	A 1990	-	13.1		Y	1		- Ch
El. energy	0	0	0	P	0	0	0	0	euros	
savings	No.			110	346		1	, SIN	1	
Fuel savings	0	0	0	0	0	0	0	0	t	
Emission	1 march	A.	a. de		6			J	t of CO_{2e}	
reduction	0,357	0,357	0,375	0,375	0,39	0,39	0,41	0,41]

The scope of activities includes the genetic improvement of animals (improved use of fodder, improving breeds emitting less methane) and also the longer period of use (longevity) together with reducing stock and the decrease of the remount of herds. There is a wide range of techniques.

Conclusions

The actions needed for NIRAP:

- Financial support for research on emission reduction, including the purchase of equipment,
- New legislation to implement mechanisms of reduction and to have information system of implementations,
- Financial support for implementation in farms,

Cooperation between NIRAP and international partners:

- Exchange the experiences in conducting the research,
- Exchange the information about used and planned legislations in agriculture.