Enteric methane emissions from ruminants: measurement techniques

Roger Hegarty & Cesar Pinares Patino University of New England, Australia AgResearch, New Zealand

ILRI/GRA Measure & mitigate Workshop 24Sept 2012

epartment of Agriculture, Fisheries and Forestry

Contents

- Measurement techniques for individual animals
- Upscaling from individuals to herds & flocks

Australian Government

Department of Agriculture, Fisheries and Forestry

11 OCTOBER 2012 | 2 Copyright © 2010 New Zealand Agricultural Greenhouse Gas Research Centre

Fact 1: CH₄ excreted at the front

Farming, Food and Health. First " RAbadema, Trial are to Aba Das Tastain

Fact 2: Large animal-to-animal variation

agresearch

Development of techniques for CH₄ measurement/estimation

arming, Food and Health. First " Austonia, Is for the first Databi

Animal Respiration Systems

Sheep chambers (at AgResearch)

Farming, Food and Health. First " Ritherheise, Brierne trither Die Dateit

Cattle chamber

Feed Digestibility = Intake – Faecal Output

WZEALAND RICULTURAL GREENHOUSE GAS search Centre

Farming, Food and Health. First * t*

The SF₆ tracer technology

$CH_4 (g/d) = PR x [CH_4]/[SF_6]$

EW ZEALAND SRICULTURAL GREENHOUSE GAS

Farming, Food and Health. First " R.Austerau, R./a/nete Abar Das Tastaly

Permeation rate of SF₆

To Altracheman To Kell me to Altral One. To

Sample collection canisters

(B)

Farming, Food and Health. First " Releases a Relative to Wat Die Databi

Collection canisters and sample flow regulators

Farming, Food and Health. First 's Alturcherson, 's Kal me to What Oro, Tuato

SF₆ tracer vs. Chamber: Fresh Grass

Hammond (2011)

agresearch

Worst situation

(very old perm tubes)

5 Alente mus, '& Kal me te Nihal Ore. Tuata

Emission estimates: association with PR

agresearch

Can we Measure Methane Yield (CH₄/kgDM)?

11 OCTOBER 2012 | 19 Copyright © 2010 New Zealand Agricultural Greenhouse Gas Research Centre

FEED INTAKE FROM FAECAL OUTPUT

DMD: common value, predicted

Faecal DM output: e.g. twice daily dosing of 'external' marker

<u>Yb, Ti dose (mg/d)</u> [Yb, Ti] faeces (mg/kg OM)

Farming, Food and Health. First* Tribushmus, Triat mark Markho, Tudahi

Upscaling – from one animal to the cattle on a thousand hills (options)

Measuring methane output of many individual cattle over a prolonged period (?) in their grazing environment

...by averaging lots of short term methane production measures

Layout of the GreenFeed[™] System

What raw data looks like

To produce graphs more quickly, gas concentrations (CH₄, C_XH_Y, and CO₂) are computed using a preliminary methodology. The displayed values are estimates and should not be used for actual calculations.

Results

Methane Yield (g/kg DM)

Data are mean of 5 x 2d measures for GEM & 5x 1d measures for chambers

Other short-term measures

Portable accumulation chambers (1hr enclosure) Correlate well with daily methane production but coefficients depend on what time of day (relative to feeding) measurements are made

Small Groups of animals

POLY-TUNNELS

High flow rates (1m³/second) sucked out 1 big exit ensures that air leaks into not out of the tunnel at other sites.

Polytunnel v Respiration Chamber

- The tunnel is not sealed, outside air may leak in through lots of sites
- It uses a much higher flow rate so that no methane escapes out the sides/doors
- It is (meant to be) portable so can move around the paddock
- Air flow is measured by air SPEED through a fixed diameter pipe, not by a VOLUME meter
- Can become a portable oven

Open Paddock emission measures (>6 cattle)

- Also need (matching) <u>concentration</u> and <u>airflow</u> measurement technologies to calculate methane production per day.
- Both requirements are challenging
 - ppb differences in gas concentration
 - Airflow is over a wide front..not just a pipe
 - Large land area of variable windspeed
 - Diurnal variation in windspeed

Measuring Concentration(upwind & downwind)

Long path length (50-100m) to detect ppb CH_4 Continuous monitoring / 10 min averaging

FTIR Spectrometer

Methane laser

Getting air flow measures

 Sonic 3D anemometer measures air turbulence & a computer airdispersion model calculates air flow over site and CH₄ production

or

The weight of N₂O lost from the canister is measured daily & multiplied by the Methane/N₂O ratio as measured by FTIR or lasers

Measuring Concentration @point

Measuring Concentration @point(s)

Eddy covariance

Micrometeorology

(Flux tower) Methane concentration, windspeed and direction measured at range of heights

Getting air flow measures

 Sonic 3D anemometer measures air turbulence & a computer airdispersion model calculates air flow over site and CH₄ production

Constraints to paddock methods

- Cost (FTIR + Sonic anemometer ~US\$150k)
- Wind !!! not too much, not too little
- Long periods at night with no data
- Concentrations of N₂O from paddocks too low for FTIR or normal laser to get N2O flux
- Measurement campaigns are conducted in short 1-3 week periods

 Sonic + Licor fast IR sensor to give continuous flux over extended periods (year?)

Conclusions on measurement

- Accurate emissions of a few animals/d readily possible
- Upscaling is possible...but still assessing how confident we are in the values obtained.
- There are a suite of new methods being developed/tested
- The Licor methane sensor + Sonic anemometer <u>may</u> give possibility for perpetual measurement of CH₄ emission from an area.
- The Greenfeed emission monitoring system may also offer long term measure in paddock situation...we shall see
- Good help is easy to find & god training.