GLOBAL RESEARCH ALLIANCE ON AGRICULTURAL GREENHOUSE GASES

IPCC Greenhouse Gas Inventory Methodology

Jon Moorby Aberystwyth University

GLOBAL RESEARCH ALLIANCE ON AGRICULTURAL GREENHOUSE GASES

Overview

- Greenhouse gas inventories
 - Why
 - What
 - How
- Sources and categories of gases
- Methods of estimation
 - Suitable or unsuitable for inventory purposes
 - Strengths and weaknesses

Focus on livestock in this talk

Inventory Good Practice

- National inventories of anthropogenic greenhouse gas emissions and removals consistent with good practice are those, which contain neither over- nor under-estimates so far as can be judged, and in which uncertainties are reduced as far as practicable.
- Estimates of this type are presumably the best attainable, given current scientific knowledge and available resources.

http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html

<u>iges</u>

GPG 2000

Agriculture Sector

- Livestock CH₄
- Manure CH₄ and N₂O
- Direct N₂O from soils
- Indirect N₂O from agricultural N
- Rice paddies CH₄

- Savannah and crop residue burning CH₄ and N₂O

Revised 2006 Guidelines

Combines Agriculture Sector and LULUCF

- Not yet approved by COP for UNFCCC inventories
- Being investigated by SBSTA for implementation from 2015
- So currently working to 1996 guidelines (GPG 2000)

United Nations Framework Convention on Climate Change

Tiers 1 & 2

• Tier 1

- Simplest to use
- Default emission factors (EF)
- Requires simple country-specific activity data (i.e. census data)

• Tier 2

• Same methodological approach as Tier 1 but applies emission and stock change factors that are based on country- or region-specific data, for the most important land-use or livestock categories

Tier 3

• Tier 3

- Models and inventory measurement systems, repeated over time, and driven by high-resolution activity data and disaggregated at sub-national level.
- These higher order methods provide estimates of greater certainty than lower tiers.
- Source estimates may include interannual variability.
- Detailed disaggregation of livestock population according to animal type, age, body weight etc., can be used.
- Models should undergo quality checks, audits, and validations and be thoroughly documented.

GLOBAL RESEARCH ALLIANCE ON AGRICULTURAL GREENHOUSE GASES

Default enteric EFs, Tier 1

TABLE 4-3 ENTERIC FERMENTATION EMISSION FACTORS (KG PER HEAD PER YR)							
Livestock	Developed Countries	Developing Countries					
Buffalo	55	55					
Sheep	8	5					
Goats	5	5					
Camels	46	46					
Horses	18	18					
Mules and Asses	10	10					
Swine	1.5	1.0					
Poultry	Not Estimated	Not Estimated					
All estimates are ±20 %							

Sources: Emission factors for buffalo and camels from Gibbs and Johnson (1993). Emission factors for other livestock from Crutzen et al. (1986).

Tier 1, Dairy Cows

ON AGRICULTURAL GREENHOUSE GASES

	ENTERIC FERMENTATIO	TABLE 4-4	FACTORSF	or C a	ATTLE				
Regional Characteristics		Cattle Type	Emission Factor (kg/head/yr)		Comments				
North America: High dairy sector feeding hi Separate beef cow her supplements seasonally steers/heifers finished cows are a small part of	ly productive commercialised gh quality forage and grain. rd, primarily grazing with feed y. Fast-growing beef in feedlots on grain. Dairy of the population.	Dairy Non-dairy	118 47	Average milk production of 6,700 kg/head/yr Includes beef cows, bulls, calves, growing steers/heifers, and feedlot cattle.					
Western Europe: Hig dairy sector feeding h Dairy cows also used small dedicated beef c feedlot feeding with g	Africa and Middle East: Commercialised dairy sector based on grazing with low production per cow. Most cattle are multi-purpose, providing draft power and some milk within farming regions. Some cattle graze over very large areas. Cattle of all types are smaller than those found in most other regions.			Dairy	y n-dairy	36 32	Average r 475 kg/he Includes r and youn	Average milk production of 475 kg/head/yr. Includes multi-purpose cows, bulls, and young	
	Indian Subcontinent: Commercialised dairy sector based on crop by-product feeding with low production per cow. Most bullocks provide draft power and cows provide some milk in farming regions. Small grazing population. Cattle in this region are the smallest compared to cattle found in all other regions.			Dair <u>y</u> Non	y i-dairy	46 25	Average r 900 kg/he Includes o Young co the popul	verage milk production of)0 kg/head/yr. cludes cows, bulls, and young. oung comprise a large portion of le population	

Tier 1 emissions

EQUATION 4.12

EMISSIONS FROM A LIVESTOCK CATEGORY

Emissions = $EF \bullet population/(10^6 \text{ kg/Gg})$

Where:

Emissions = methane emissions from enteric fermentation, Gg CH_4 /year EF = emission factor for the specific population, kg/head/year Population = the number of animals, head

EQUATION 4.13

TOTAL EMISSIONS FROM LIVESTOCK

Total CH_4 Emissions = $\sum_i E_i$

Where:

Total Emissions = total methane emissions from enteric fermentation, Gg

CH₄/year

index i = sums of all livestock categories and sub-categories E_i = is the emissions for the ith livestock categories and sub-categories

Tiers 2 and 3

Moving from Tier 1 to Tier 2 or 3

• Little specific guidance from IPCC

Actual distinction between Tier 2 and Tier 3 is fuzzy

- Whether Tier 2 or 3 is not important
- Important that detailed spatial and temporal data and country- or region-specific that increases accuracy and reduces uncertainty
- Tier 2 or 3 should be used for key source categories

Enteric fermentation and direct soil N₂O are key source categories for livestock

Tier 2 enteric methane

EQUATION 4.14

EMISSIONS FACTOR DEVELOPMENT

 $EF = (GE \bullet Y_m \bullet 365 \text{ days/yr}) / (55.65 \text{ MJ/kg CH}_4)$

Where:

 $EF = emission factor, kg CH_4/head/yr$

GE = gross energy intake, MJ/head/day

 Y_m = methane conversion rate which is the fraction of gross energy in the feed converted to methane

$\mathbf{Y}_{\mathbf{m}}$ CH₄-E/GEI,% 5 7 9 5 2 Methane, g/d $R^2 = 0.6868$ $R^2 = 0.0031$ Mean feed intake, g DM/d Mean feed intake, g DM/d

Tier 2 sheep, UK

CH₄: Manures Default EFs (Tier 1)

TABLE 4-5 MANURE MANAGEMENT EMISSION FACTORS (KG PER HEAD PER YR)										
Livestock	De	eveloped Cour	ntries	Developing Countries						
	Cool	Temp. ^a	Warm	Cool	Temp. ^a	Warm				
Sheep	0.19	0.28	0.37	0.10	0.16	0.21				
Goats	0.12	0.18	0.23	0.11	0.17	0.22				
Camels	1.6	2.4	3.2	1.3	1.9	2.6				
Horses	1.4	2.1	2.8	1.1	1.6	2.2				
Mules and Asses	0.76	1.14	1.51	0.60	0.90	1.2				
Poultry ^b	0.078	0.117	0.157	0.012	0.018	0.023				

The range of estimates reflects cool to warm climates. Climate regions are defined in terms of annual average temperature as follows: Cool = less than 15° C; Temperate = 15° C to 25° C inclusive; and Warm = greater than 25° C. The Cool, Temperate and Warm regions are estimated using MCFs of 1 %, 1.5 % and 2 %, respectively.

a Temp. = Temperate climate region.

b Chickens, ducks, and turkeys.

All estimates are <u>+</u>20 %.

Sources: Emission factors developed from: feed intake values and feed digestibilities used to develop the enteric fermentation emission factors (see Appendix A); MCF, and B_o values reported in Woodbury and Hashimoto (1993). All manure is assumed to be managed in dry systems, which is consistent with the manure management system usage reported in Woodbury and Hashimoto (1993).

CH₄: Tier 2 Manures

Lab scale characterisation of manures

$EF_{MS} = VS \times 365 \times B_0 \times 0.67 \times MCF$

VS = volatile solids

Bo = total methane production potential

MCF = Methane Conversion Factor – varies with management practice

Nitrous oxide

- N₂O from grazing animals
- Direct N₂O from soils
 - Fertiliser applications
- Indirect N₂O
- Tier 1 uses table values
 - E.g. 1.25% N₂O-N/kg N-input for fertilisers
- Tier 2 country-specific EFs

ON AGRICULTURAL GREENHOUSE GASES

GLOBAL

RESEARCH

Comments on Tiers

- Greatest confidence with enteric fermentation
 - But as activity data improves on management and diet information we need better emission factors
- N_2O most uncertain and most use of Tier 1
- Carbon stock change for land use and land-use change becoming more developed
- Tier 3 uncommon generally for any category

Where next?

- For countries looking to improve to Tier 2 or higher, no one is going to do it for them
 - No "default" Tier 2 factors
- However, huge advantages for countries to work together to:
 - Share lessons learned, inventory knowledge, measurements, and methods
 - Collaborate to assist each other develop methodologies

Acknowledgements

Llywodraeth Cymru Welsh Government