Methane and nitrous oxide emissions from rice paddies in India

Kritee. Ph.D. Senior Scientist, Global Climate Environmental Defense Fund, U.S.A

Email: kritee@edf.org

Environmental Defense Fund

- A non-profit founded in 1967
- Driven by science, economic & legal analysis
- 12 offices with >500 employees and >750,000 members
- Main areas of focus:
 - Climate and Energy
 - Ecosystems
 - Oceans
 - Health

Where we work on agriculture

Indian Rice

- Area: 144 million ha
- Production: 140-160 million tons/year
- GHG Emissions: India Govt (2007) vs EPA (2014) Methane: 75 vs 90 MT CO₂e Nitrous oxide: 0 vs 75 MT CO₂e Mitigation potential: ?? vs 35 MT CO₂e

Partners in India: EDF & Fair Climate Network (Resources ←→ Clients ←→ Institutions)

PWDS Palmyrah Workers Development Society

Scientific approach

- Farmer surveys for baseline conditions/practices
 - Major cropping systems
 - Fertilizer, manure, water management, pesticides
 - Soil qualities (T, pH), weather,
- New "sustainable" practices with NGO partners
 - Yield, low costs, soil and water quality, potential GHG mitigation

Sample collection

- Random replication
- Design of chambers and sampling frequency
- Temperature corrections
- Greenhouse gas emission measurements
 - Precision of GCs
 - Calibration and standards
- Data analysis and modeling

Training sessions

Rice CH₄ emissions: Why and how?

Methane oxidation: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Methanogenesis: Hydrogenotrophic: $CO_2 + 4H_2 \rightarrow 2H_2O + CH_4$ Acetotrophic: $CH_3COOH \rightarrow CO_2 + CH_4$

Rice N₂O emissions: Why and when?

Aerobic/irrigated paddy in sandy soils

Changing Water levels = Fluctuating redox = potential for high N₂O emissions

Methodology

Rice GHG sampling

Photo: Dr. Tran Kim Tinh, Can Tho University

Replicates separated by levees

Multi-point calibration curves for GC

N ₂ O (ppmv)	CH ₄ (ppmv)
0.197	1.535
0.393	3.352
0.795	7.152
1.615	15.682

Methodology's minimum detection limit GC's Precision should be less than 2% RSD

Linear increase in GHG concentration inside the chamber

Stackable chambers

40cm Sampling tube: 20cm 80cm Sampling tube: 40cm 120cm Sampling tube: 60cm

Results

Frequent field sampling necessary even for methane

Day after transplantation

Nitrous oxide vs Methane emissions

3 Agro-ecological zones over 3 years

Region, treatment and Year

Methane (tCO2e/ha)

Nitrous oxide (tCO2e/ha)

Summary: Rice

In partnership with AF (Accion Fraterna)

Rice Fall 2012 N input (Kg N/ha): 406 → 331 N₂O (tCO2e/ha): 3.90 ± 1.0 → 1.40 ± 0.2 N₂O (N₂O-N Kg/ha): 8.32 ± 1.9 → 3.02 ± 0.49 CH₄ (tCO2e/ha): 2.06 ± 1.0 → 2.52 ± 1.0 Yield-scaled (tCO₂e/t yield): 1.3 → 0.8 Emission factor (%): 2.05 → 0.91

Rice Fall 2013

N input (Kg N/ha): 397 → 239 N₂O (tCO₂e/ha): 0.18 ± 0.07 → 0.02 ± 0.03 N₂O (N₂O-N Kg/ha): 0.39 ± 0.15 → 0.04 ± 0.06 CH₄ (tCO₂e/ha): 3.25 ± 0.11 → 3.05 ± 1.18 Yield-scaled (tCO₂e/t yield): 0.73 → 1.14 Emission factor (%): 0.1 → 0.02

In partnership with PWDS

(Palmyrah Workers Development Society)

Karnataka

3.0

8.2

Rice Fall 2013

N input (Kg N/ha): 120 → 100 N₂O (tCO₂e/ha): 0.5 ± 0.26 → 0.49 ± 0.36 N₂O (N₂O-N Kg/ha): 0.99 ± 0.56 → 1.1 ± 0.76 CH₄ (tCO₂e/ha): 9.1 ± 0.8 → 1.5 ± 1.1 Yield-scaled (tCO₂e/t yield): 0.54 → 0.41 Emission factor (%): 0.82 → 1.06

In partnership with BEST (Bharat Environment Seva Team)

Rice Fall 2012

Andhra Pradesh

8.3

8.1

N input (Kg N/ha): 220 → 124 N₂O (tCO₂e/ha): 6.8 ± 1.1 → 0.7 ± 0.1 N₂O (N₂O-N Kg/ha): 14.0± 2.4 → 0.2 ± 0.2 CH₄ (tCO₂e/ha): 0.3 ± 0.2 → 0.2 ± 0.03 Yield-scaled (tCO₂e/t yield) : 1.7 → 0.4 Emission factor (%) : 6.6 → 1.2

Rice Fall 2013

N input (Kg N/ha): 220 → 93 N₂O (tCO₂e/ha): $5.2 \pm 2.34 \rightarrow 3.4 \pm 1.4$ N₂O (N₂O-N Kg/ha): $11.0 \pm 4.9 \rightarrow 7.0 \pm 3.1$ CH₄ (tCO₂e/ha): $3.4 \pm 0.2 \rightarrow 3.5 \pm 0.5$ Yield-scaled (tCO₂e/t yield) : $1.5 \rightarrow 1.7$ Emission factor (%) : $5 \rightarrow 8$

Rice Fall 2014

N input (Kg N/ha): 202 → 121 N₂O (tCO₂e/ha): 0.26 ± 0.13 → 0.01 ± 0.03 N₂O (N₂O-N Kg/ha): 1.4 ± 0.6 → 0.03 ± .15 CH₄ (tCO₂e/ha): 4.37 ± 0.3 → 4.78 ± 0.8 Yield-scaled (tCO₂e/t yield) : 1.48 → 0.34

Conclusions

Technical conclusions

- Maximum observed N_2O 10 tCO₂e/ha/season (Max till date 2)
- Antagonism between N₂O and CH₄ emissions
- Emission factor: Maximum 8%

Range 0.22% Linquist (2012), 0.31% Akiyama (2005), 04.-0.7% Sun (2012)

- High percolation rates & low water index can cause high N₂O
- Drainage can lead to both high N₂O and high CH₄
- AWD initiatives must evaluate potential N₂O increase
- Timing of synthetic fertilization (one time vs. multiple)
- Timing of organic matter addition (during dry season)
- Methane and soil C/long term soil quality and yields: future need of C/N additions?

Rice GHG emissions: Unresolved challenges

Net Global warming potential (100 year time scale) =

(31*Methane) + (298*Nitrous Oxide) minus (3.66*Soil Carbon gain)

- Antagonism between N₂O & CH₄ wrt water management is known; but
 - Once a week measurements can be very misleading.
- Antagonism between methane emissions and soil C gain is not yet appreciated
 - Water and C management for CH₄ reduction degrades stable soil C
 - Soil C loss (0.5-1 ton C/yr/ha) can undo effect of N_2O and CH_4 reductions
- Soil C loss \rightarrow a negative impact on soil quality, climate resilience and crop yield
 - Will require more C and N input in future
- As a community, we should emphasize on
 - Water level monitoring near chambers
 - Soil analysis
 - Daily calibration
 - Use of only 1-2 points for calibration \rightarrow faulty results
 - Use of 2-3 samples from a chamber \rightarrow misleading emission rates

Questions?

Kritee kritee@edf.org

Twitter @KriteeKanko

Greenhouse gas emissions CO₂e (2010 & 2030)

Policy & Management Implications

- AWD initiatives must evaluate potential N₂O increase
- High percolation rates & low water index can cause high N₂O
- Timing of organic matter addition (during dry season)
- Timing of synthetic fertilization (one time vs. multiple):
 Different for different regions

- Nitrous oxide emission on site vs. leaching off-site?
- Traditional seed variety vs. hybrids?
- Methane and soil C/long term soil quality and yields: future need of C/N additions?

Ensuring climate Integrity & meeting potential C market requirements

- Additionality
 - Surveys for baseline conditions/practices (2000 farmers)
 - New interventions "sustainable" practices
- Leakage and permanence
 - Sample collection & GHG emissions (30,000 samples)
 - Yields and economic data
 - Data analysis and modeling
- Transparency and monitoring:
 - Farmer diaries (20,000)
 - Data storage and presentation
- Submission under an existing/new offset methodology
 - Peer reviewed publications (2 + 2)

*Fallow land includes 1% fodder crop All data presented is taken from 3 year average

DESIGNING NEW (LCF) PRACTICES

Extra Slides for soil conference: include upland crop data and other details

non-CO₂ GHGs.

AGRICULTURAL N2O EMISSIONS: WH

Figure from http://cwfs.org.au/nitrous_oxide__n2o__losses_from_cropping_in_low_rainfall_environments

Peanut (AEZ 3.0)

In partnership with AF (Accion Fraterna)

	2012 Kharif	2012 <i>Rabi</i>	2013 Kharif	2014 Kharif
N input (kg N/ha)	66 → 41	104 → 42	97 🗲 78	101 -> 57
N ₂ O (tCO ₂ e/ha)	0.61 → 0.47	0.88 → 0.64	$0.5 \pm 0.1 \rightarrow 0.3 \pm 0.04$	$1.3 \pm 0.3 \rightarrow 0.5 \pm 0.1$
N ₂ O (N ₂ O-N kg/ha)	$1.3 \pm 0.3 \Rightarrow 1.0 \pm 0.03$	$1.9 \pm 0.3 \rightarrow 1.4 \pm 0.4$	$1.1 \pm 0.1 \Rightarrow 0.64 \pm 0.1$	$2.9 \pm 0.5 \rightarrow 1.1 \pm 0.3$
Yield-scaled (tCO ₂ e/t yield)	$1.6 \pm 0.4 \rightarrow 0.8 \pm 0.02$	$0.9 \pm 0.1 \rightarrow 0.5 \pm 0.1$	$0.8 \pm 0.05 \Rightarrow 0.6 \pm 0.04$	$5.6 \pm 0.3 \rightarrow 1.9 \pm 0.1$
Emission factor (%)	1 . 7% → 2 . 1%	1.6% 🗲 2.9%	0.9% 🔿 0.6%	2.4% → 1.1%

Finger millet Kharif (AEZ 8.2)

In partnership with SACRED (Social Animation Center for Rural Education & Development)

	2012	2013	2014
N input (kg N/ha)	211 -> 72	470 → 72	475 → 72
N ₂ O (tCO ₂ e/ha)	$1.55 \pm 0.69 \rightarrow 0.34 \pm 0.14$	8.41 ± 1.05 → 0.11 ± 0.08	$6.07 \pm 2.40 \rightarrow 0.16 \pm 0.05$
N ₂ O (N ₂ O-N kg/ha)	$3.30 \pm 1.46 \rightarrow 0.73 \pm 0.29$	$17.96 \pm 2.25 \rightarrow 0.23 \pm 0.17$	$12.97 \pm 5.13 \rightarrow 0.34 \pm 0.12$
Yield-scaled (tCO ₂ e/t yield)	3.66 ± 0.87 → 0.64 ± 0.17	$15.05 \pm 1.89 \rightarrow 0.16 \pm 0.12$	12.07 ± 4.28 → 0.26 ± 0.08
Emission factor (%)	1.5% → 0.9%	3.8% → 0.19%	2.66% → 0.002%
	96mm CPR	149mm CPR	337 mm CPR

There are more people living inside this circle than outside of it.

Valerie Pieris / Via reddit.com

EFFECT OF AGRICULTURE ON BIOSPHERE Thin inter-connected layers

Freshwater 70% of 75 mile sphere

<u>Topsoil</u> **12-16** \rightarrow \rightarrow **2-8** inches

Atmosphere 20 miles

a Liquid fresh water 🗈

Howard Perlman, USGS Jack Cook, Adam Nieman

An IndiGo Airlines Airbus A320 aircraft is pictured parked at a gate at Mumbai's Chhatrapathi Shivaji International Airport on February 3, 2013. REUTERS/Vivek Prakash

Airline travelers in India who fly the country's largest airline now have an opportunity to support low-carbon rural development programs across the country.

The landmark partnership was **unveiled this weekend** between the Fair Climate Network (FCN), a consortium of Indian groups that is committed to improving health and livelihoods in rural communities, promoting climate resilience and reducing climate pollution, and IndiGo, the country's largest and fastest growing airline.

*	Tweet	
£	Like	
₹*	Google +1	
in	LinkedIn	
*	Bookmark	

STRATEGY

INTERCONNECTIONS & ENERGY FLOWS

ENERGY DEMAND TRAJECTORIES

Source: /

ELECTRICITY & CLEAN COOK-STOVE GAP

Million people without clean cooking facilities

Source: International Energy Agency, "Energy for All: Financing for the Poor," October 2011.

GHG EMISSION REDUCTION MEASUREMENTS

Feeding 9 billion & facing climate change = Working with >2 billion who live on <\$2/day and <2 ha

- 40-60% of a nation's population is employed in agriculture
- These family farms grow ~90% rice, ~65% wheat and ~55% corn.
- Financial, institutional, ecological, diffusion & transfer barriers to implementations

Low Carbon Rural Development

98% of undernourished are not in low/medium income countries which are also projected to have most increase in their population by 2050

MODEL FOR LOW CARBON FARMING

INSTITUTIONS International National Sub National Local (NGO's; communities)

RESOURCES

International National Carbon Finance from Markets

Challenges at rural smallholder farms

Scientific

- Diversity of crops/seasons
- Size of plots and land type
- Diversity of sustainable practices
- Absence of level fields
- Dryland soils → Low water retention
- Sampling and measurements in tropical conditions
- Infrastructure
- Limited understanding among lab/field workers of
 - Climate change: "Its about ozone destruction"
 - Carbon markets: "You can sell air?"
- Educational/cultural background
 - Staff retention
 - Gender gap & language barriers