2015 Asia Sub-Group Meeting of GRA-PRRG 18 September 2015 ISS-CAS, Nanjing, China

Pilot Multi-Site/Country Experiment

Kazunori Minamikawa (NIAES) Agnes Padre (IRRI) And other participants

MIRSA Project

(Greenhouse Gas Mitigation in Irrigated Rice Paddies in Southeast Asia)

- A research project funded by MAFF, Japan, from 2013 to 2018
- Aiming at assessing the feasibility of GHG mitigation through water saving techniques (AWD) in irrigated rice fields
- Results shows effectiveness of AWD to reduce CH₄+N₂O emissions

Research objective

Our project aims to develop improved water management based on Alternate Wetting and Drying (AWD) that can always reduce soil-derived CO₂-eq emission (CH₄ + N₂O) during rice growing season from irrigated rice paddies in Asian countries by 30% compared to the conventional practice.

AWD: Alternate Wetting and Drying

As far as I know, the term "AWD" is now used as a common term that denotes "water management practice during rice growing period."

In our project, the three practices are shared and tested at all the sites.

- 1. Continuous flooding: as reference practice
- 2. Safe AWD: naturally drained until the surface water table reaches –15 cm; and then irrigated...
- **3. Site-specific AWD**: established based on scientific experience of each monitoring site (i.e., can differ in the practice among the sites)

Previous annual meetings

Kick-off meeting 2-4. Oct. 2013 Hue University of Agriculture and Forestry, Vietnam

2nd annual meeting 18-19. Aug. 2014 IRRI, Philippines

Previous site visiting

NIAES and IRRI colleagues have inspected all the four sites.

Soil Profiles

VIETNAM

Thua Thuen, Hue

FAO: Dystric Fluvisols, USDA: Typic Endoaquepts

no mottles

Decreasing condition

THAILAND

Bansang, Prachinburi

USDA: Vertic Endoaquepts

WET with mottles

Indicates seasonal oxidation in the soil pores

INDONESIA

Jakenan, Pati, Central Java

USDA: Aeric Endoaquepts

DRY

PHILIPPINES

Maligaya, Muñoz, Nueva Ecija

FAO: Ustic Epiaquert USDA: Eutric Vertisol

DRY

Greenhouse <u>Mitigation in Irrigated Rice Systems in Southeast Asia</u>

Site Specificities

Soil

	HUAF	IAERI	PhilRice	PRRC	
Site	Thua Thien,	Pati, Central	Muñoz, Nueva	Bansang,	
	Hue	Java	Ecija	Prachinburi	
Soil texture	loam	Loam	Clay	Clay	
Clay	17.5	18.2	17	10.4	
Silt	33.2	34.9	39	26.7	
Sand	49.3	46.9	44	62.9	
рН	4.18	6.24	6.44	4.93	
Total C %	1.25	1.37	1.72	1.93	
Total N %	0.068	0.08	0.101	0.18	

3rd Annual Meeting of MIRSA-2 Project Tsukuba, Ibaraki, Japan MIRSA Aug 24-25, 2015

Thua Thien, Hue

Thua Thien, Hue

Season	S1		S2		S3				
Water mgt.	CF	AWD	AWDS	CF	AWD	AWDS	CF	AWD	AWDS
CH₄ kg ha⁻¹	512	396	429	1029	814	810	485	299	255
N ₂ O kg ha ⁻¹	0.29	0.36	0.30	1.05	0.71	0.57	0.27	0.05	0.11
GWP CO ₂ eq t ha ⁻¹	12.9	10.0	10.8	26.0	20.5	20.3	12.2	7.5	6.4
% reduction		22	16		21	22		39	47

Methane fluxes 3rd season (WS 2014 – 2015)

$CH_4 + N_2O$ Emissions in the Season 1-3

CF: Continuous flooding; AWD: Safe AWD; AWDS: Site-specific AWD

Grain Yields in the Season 1-3

Maligaya, Philippines

CF: Continuous flooding; AWD: Safe AWD; AWDS: Site-specific AWD

Conclusions

- Management of AWD that will lead to optimum reduction in GWP is site specific.
- Soil characteristics, rainfall patterns, and water availability need to be considered in the optimum management of AWD.
- Increasing the number of drainage events or the number days without soil surface water increased reductions in GWP in 3 of the 4 sites.
- AWD sometime increased N₂O emissions in Muñoz, Nueva Ecija and Jakenan but not enough to offset CH₄ emission reductions.
- The high increase in CH₄ emissions during the first 2 weeks after transplanting (before AWD could be practiced) due to the incorporation of rice stubbles, overshadowed the CH4 emission reduction at later stages.

Near-future milestone

