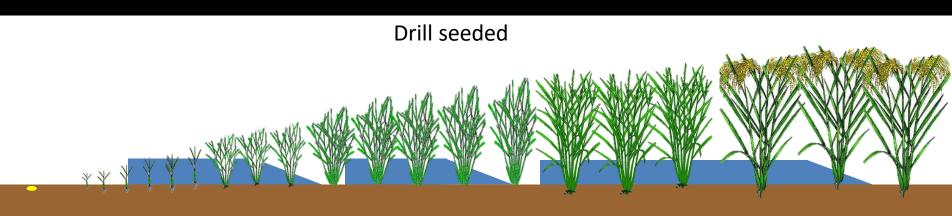

Greenhouse gas emissions on rice fields subjected to alternate wetting and drying

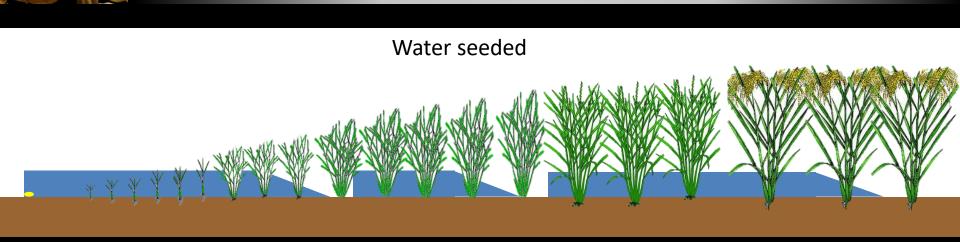
Bruce Linquist Merle Anders, Arlene Adviento-Borbe, Daniela Carrijo, Gabriel LaHue

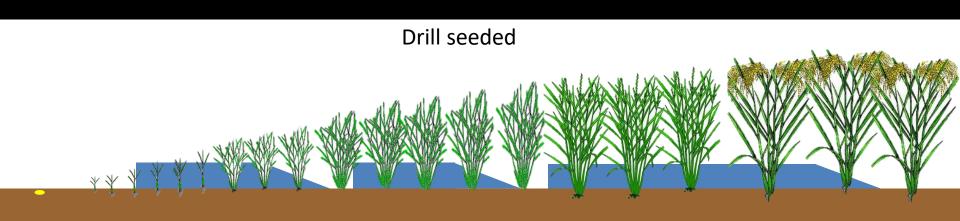
> July 13, 2016 Stuttgart, Arkansas

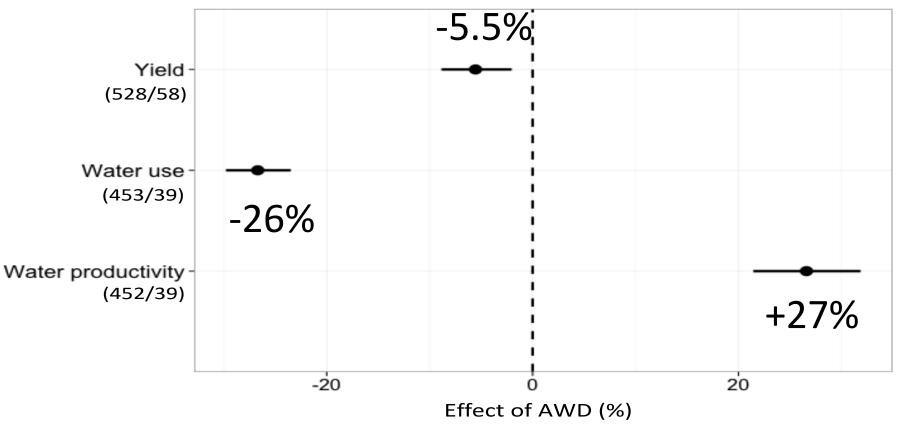


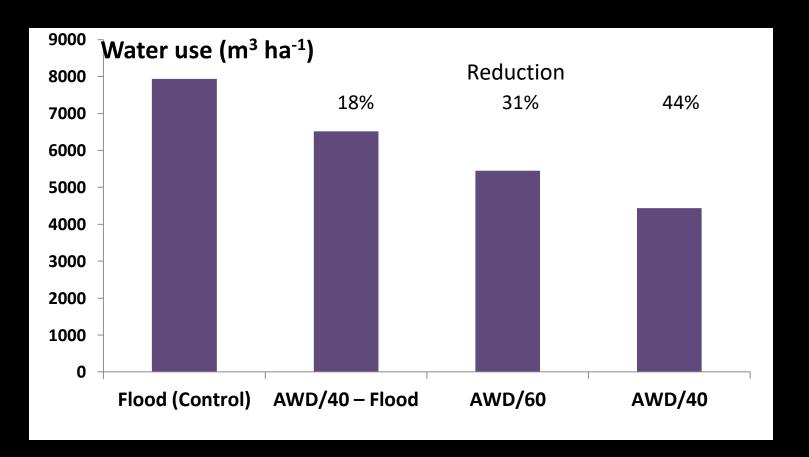

Outline

- What is it and why?
- Managing drain timing and duration to achieve desired outcomes
- Challenges


Alternate wetting and drying







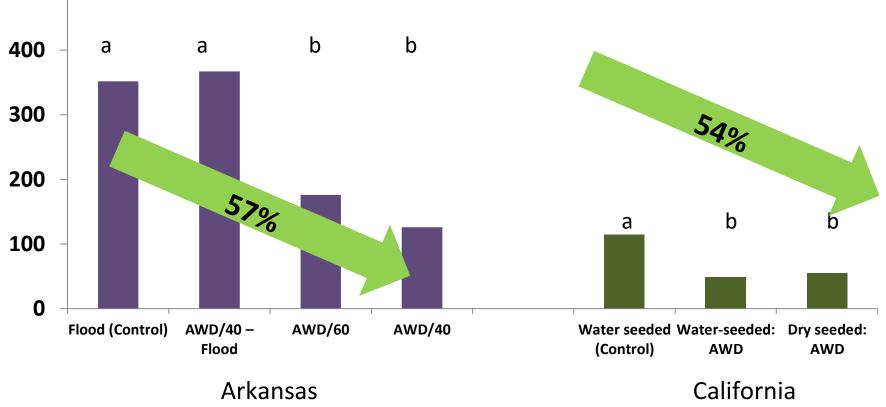
Water use: meta-analysis

Water use: Arkansas cross year averages

Linquist et al., 2015- Global Change Biology

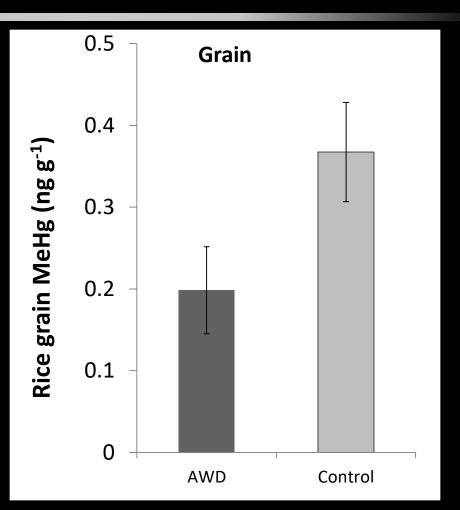
Heavy metals

- Arsenic (As)
 - Present in rice grain
 - Human health concern
 - Babies and populations with high rice intake


- Mercury (Hg)
 - Ecosystem concern
 - Flooding leads to methylation of Hg = methyl mercury (MeHg)
 - MeHg is toxic
 - MeHg bio-accumulates in food systems

Grain arsenic: Arkansas and California - cross year averages

500 ¬Arsenic (μg kg⁻¹)



Arkansas data: Linquist et al., 2015- Global Change Biology California data: LaHue et al., Submitted

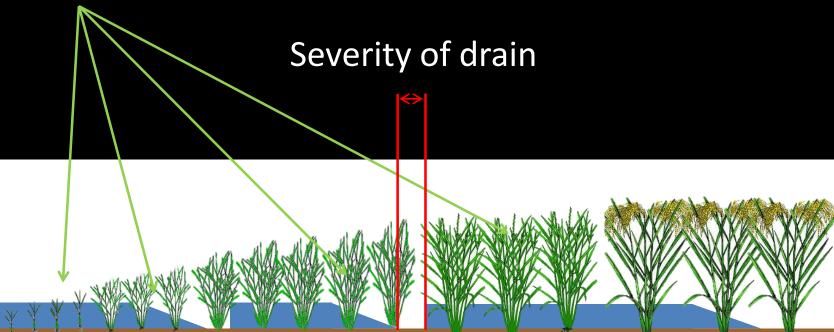
Methyl mercury (MeHg)

- Rice grain MeHg levels not a health concern
- AWD reduced MeHg in grain by almost 50%
- Grain MeHg: good integrator of seasonal Hg dynamics
- Suggests that AWD may reduce overall MeHg production

Drains: when and how long?

<u>Windows</u>

- When and for how long
- Greatest benefits
- Least affect on yield

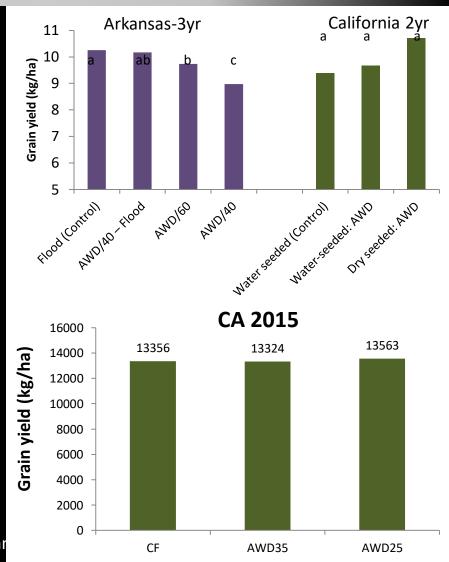


Drain windows

When during the season?

Focus studies: variation in drain severity

- Arkansas (Drill seeded Linquist et al., 2015 Global Change Biology)
 - 3 years Treatments
 - Continuous flood
 - One early drain
 - Two drains (60% saturation)
 - Two drains (40% saturation)
- California (Water seeded LaHue et al., In Press)
 - 2 years Treatments (all drains to 35 % VWC)
 - Water seeded continuous flood
 - Water seeded 2 drains
 - Drill seeded 2 drains
- California (Water seeded)
 - 2015 Treatments
 - Water seeded continuous flood
 - Water seeded (35% VWC)
 - Water seeded (25% VWC)



Yields: Arkansas and California Cross year averages

- CA: no yield reduction with AWD or increased soil drying
- AR: decline with increased soil drying
- Different methodology to estimate soil moisture

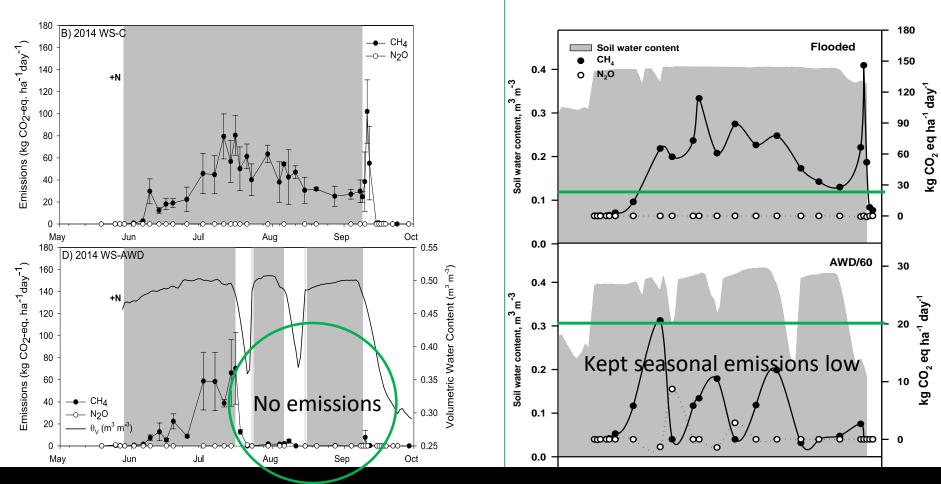
 AR-AWD 60 is drier than CA-AWD 35

AR data: Linquist et al., 2015- Global Change Biology CA data: LaHue et al., 2016 – Agriculture ,Ecosystems and Environr

Factors affecting yield: Meta-analysis


- Primary factor affecting yields
 - water management
- Secondary factors that can reduce yields are
 - High pH soil
 - Low carbon soils
 - High clay soils

Carrijo et al., In Prep)


Greenhouse gas emissions

- CH4 emissions increase until first drain then drop.
 - In CA, very little CH4 after first drain
- In AR, N2O emissions increased during drain events. Not seen in CA

Greenhouse gas emissions

- CH4 reduced by 60-90% with two drains
- N₂O low
- GWP reductions of 60 – 90% were achieved.
 - Discuss later

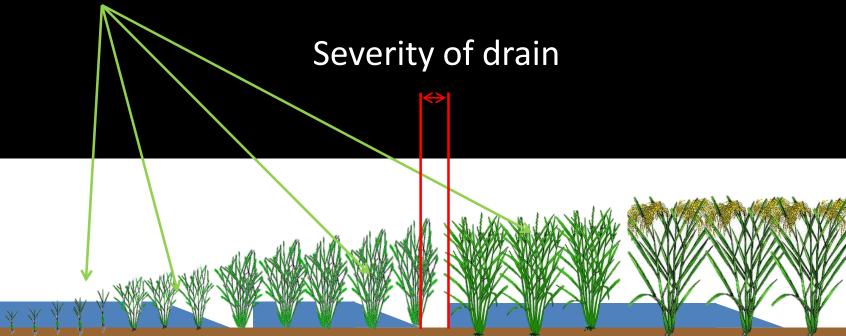
	CA 2013-2014			
Treatment	CH ₄ (kg CH ₄ -C ha ⁻¹)	N₂O (kg N ₂ O-N ha ⁻¹)	GWP (kg CO ₂ -eq ha ⁻¹)	GWP % Reduction
Flood	133 a	-0.02a	6035a	-
WS AWD	52 b	-0.03a	2361b	61
DS AWD	18 b	0.21a	903c	85
	CA 2015			
Flood	338 a	-57 a	11262 a	-
AWD-35	92 b	-111 a	3003 b	73
AWD-25	111 b	-32 a	3681 b	67
	AR 2012-2013			
Flood	105 a	0.03 b	3520 a	-
AWD/40–flood	55 b	0.17 ab	1922 b	45
AWD/60	7 c	0.28 ab	359 c	90
AWD/40	8 c	0.51 a	494 c	86

Yield-scaled GWP

- Yield-scaled GWP
 kg CO₂ Mg⁻¹ grain
- Yield-scaled GWP decrease similar to GWP
 - GWP decreased
 while yields
 changed little

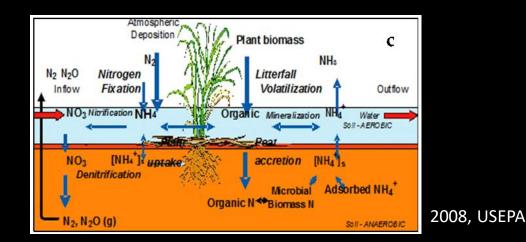
		CA 2013-2014			
	TRT	Yield (Mg ha ⁻¹)	GWP (kg CO ₂ -eq ha ⁻¹)	GWP-Y (kg CO ₂ -eq Mg ⁻¹ grain)	GWP-Y %Reduction
	Flood	9.38	6035a	667a	-
	WS AWD	9.66	2361b	251 b	62
	DS AWD	10.71	903c	84 b	87
			CA 2015		
	Flood	13.36	11,262 a	947 a	-
	AWD-35	13.32	3,003 b	253 b	73
	AWD-25	13.56	3,681 b	305 b	68
		AR 2012-2013			
lo	od	10.26	3520 a	347 a	-
M	/D/40–flood	10.17	1922 b	190 b	45
M	/D/60	9.73	359 c	37 с	89
M	/D/40	8.97	494 c	55 c	84

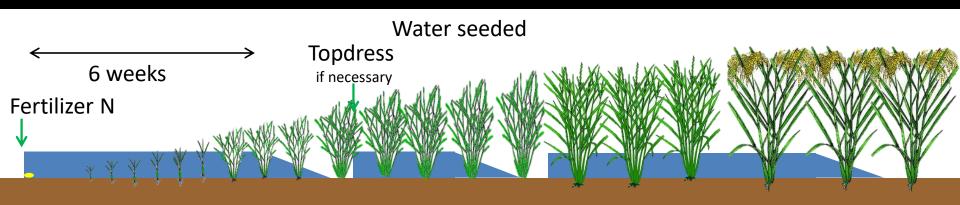
Is there a GHG benefit to extended dry times?

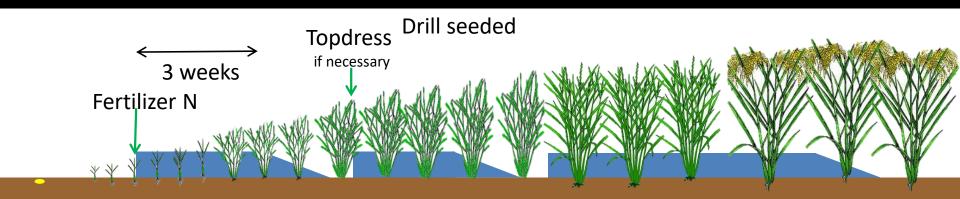

 Allowing fields to dry longer did not reduce GHG emissions

California TRT	CH ₄ kg CH₄-C ha⁻¹	N ₂ O kg N ₂ O-N ha⁻¹
-Flood	<u>338 a</u>	<u>-57 a</u>
AWD-35	92 b	-111 a
AWD-25	111 b	-32 a
Arkansas	CH ₄	N ₂ O
TRT	kg CH₄-C/ha	kg N ₂ O-N/ha
Fl ood	<u>105 a</u>	0.03 b
AWD/60	7 с	0.28 ab
AWD/40	8 c	0.51 a

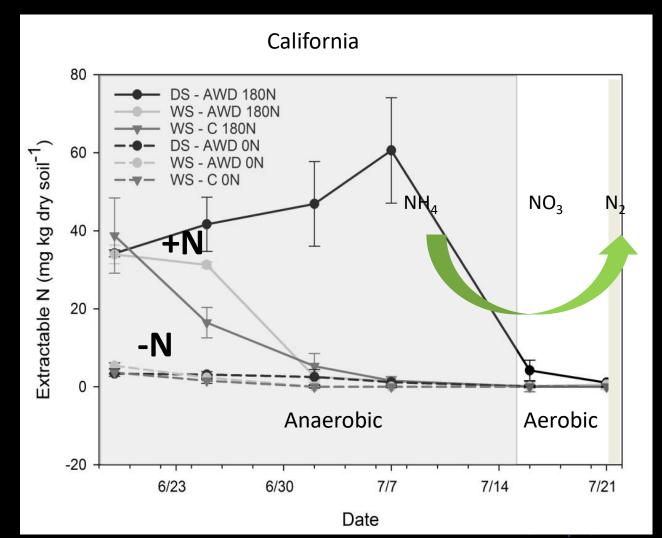
Drain windows and nitrogen mgmt to keep N₂O low

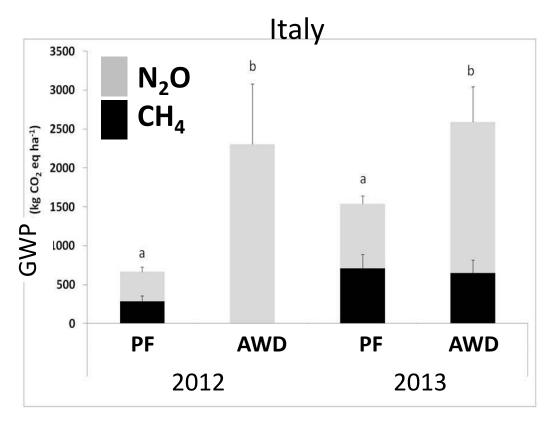

When during the season?


Nitrogen management


- Keeping GWP low requires optimal N and water management to minimize N₂O losses
- Introducing aerobic periods into system increases opportunities for losses via denitrification

AWD: N management to reduce N₂O emissions and N losses




Managing N fertilizer and water

- Eliminated or reduced N₂O emissions
- Little to no N additional losses
 - Same N rate
 to achieve
 optimum
 yield

Managing N fertilizer and water

- Italian study
- Permanent flood vs AWD
- Used nitrification inhibitor
- Drained randomly
- CH₄

PF=Permanent flood

Lagomarsino et al., (2016) Pedosphere

Drain windows: timing

- Water seeded
 - First drain 45-50 days after planting
 - Fertilizer N has been taken up
 - Canopy cover has been achieved (reduced weed issues)
- Drill seeded
 - First drain 3 weeks after permanent flood
 - Fertilizer N has been taken up
 - Canopy cover has been achieved

Drain windows: duration

- Drain times: 7-10 days from soil saturation
- Longer drain times lead to:
 - Increased risk of yield loss
 - Increased water savings
 - Lower As???
- Longer drain times do not:
 Reduce GWP

2016 studies: Duration

Drain duration:

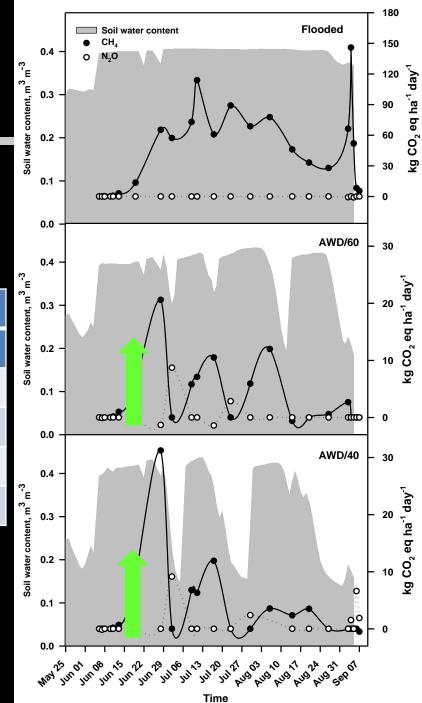
- Critical for developing strategies for large fields
 Reflood up to 5 days
- Studies
 - Water seeded continuous flood
 - Safe AWD (reflood when water reaches 15 cm below soil surface)
 - Water seeded (35% VWC)
 - Water seeded (25% VWC)
- Duration range: 2-10 days
- Examining 1 vs 2 drains

In Summary

- AWD presents a real win-win-win opportunity
 - <u>Farm</u>: save water/pumping costs, no yield reduction
 - <u>Health</u>: reduce grain As
 - <u>Environment</u>: water resources, GHG, MeHg

Challenges and opportunities

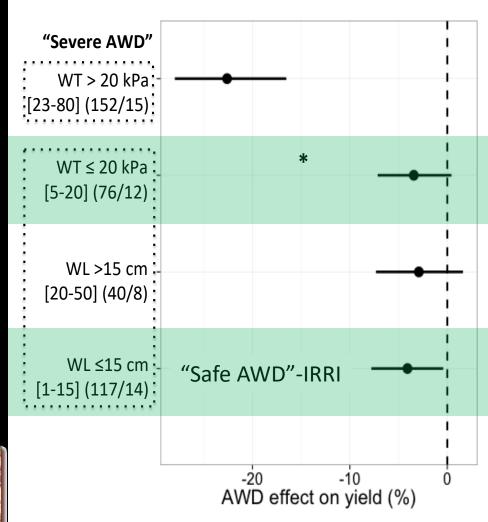
- Field scale
 - Variability
 - soils/moisture/rate of drying
 - Rapid/timely application of water
 - Wells and poly-pipe are big advantage
 - Grower comfort
 - Programs that allow testing with minimal risk
- Future research
 - Identify dry-down windows where desired benefits are achieved without yield risk
 - Time during season and length
 - Develop technologies to monitor soil moisture conditions

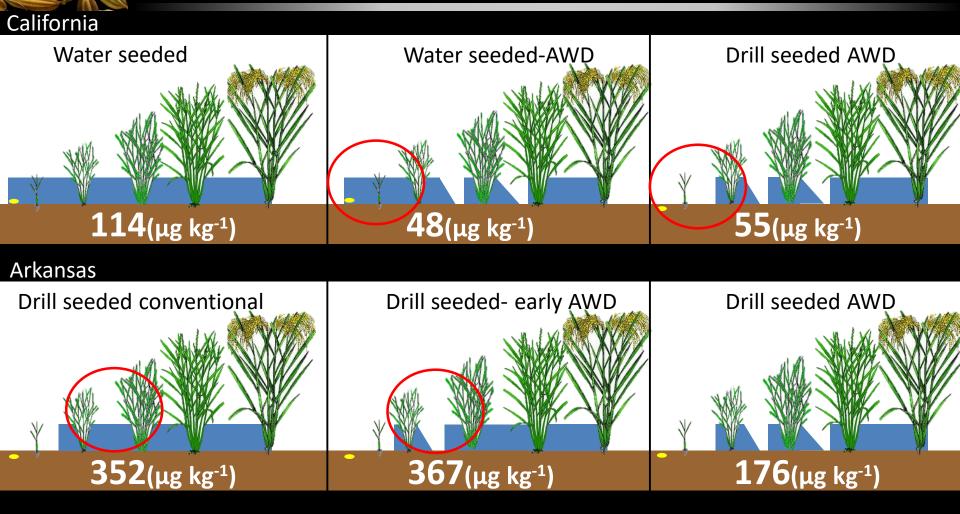


AWD - GHG

TRT	CH ₄	N ₂ O
	kg CH ₄ -C/ha	kg N ₂ O-N/ha
Flood	105 a	0.03 b
AWD/40–flood	55 b	0.17 ab
AWD/60	7 c	0.28 ab
AWD/40	8 c	0.51 a

Managing water




Meta-analysis: Soil moisture and yields

- > 20kPa resulted in 23% yield loss
- <20 kPa or "Safe AWD" resulted in 2-4% yield loss.
- Safe AWD
 - measured water table below soil surface <15cm
 - Conservative measure
 - No difference between < or >15cm
 - CA occurred 2 days after soil saturation.
 - AWD treatments were reflooded
 5 to 10 days after soil saturation.
 - Useful?

AWD drain timing and grain As

Early season aerobic periods had little impact on grain As concentrations

Length of drain time and grain As

- Possibly a small effect of longer drain times on rice grain As.
- On average a 12% further reduction in grain As with increased drain times.
- In no individual study was this significant.

State	Treatment	Polished rice total As (ug/g)	% reduction
Arkansas-RS	Flood	343	-
	AWD/60	165	52
	AWD/40	114	67
Arkansas-RR	Flood	370	-
	AWD/60	199	46
	AWD/40	149	60
California	Flood	111	-
	35%	44	60
	25%	36	68

