GLOBAL RESEARCH ALLIANCE

ON AGRICULTURAL GREENHOUSE GASES

9th Livestock Research Group meeting

10-12 April 2017

Advancing the Enteric Fermentation Flagship

Why is this flagship important?

Enteric methane is the biggest source of direct global GHG emissions from livestock

Emissions per animal vary widely depending on the species, feed and productivity

A significant challenge for estimating **AND** an opportunity for reducing livestock GHGs

RESEARCH ALLIANCE ON AGRICULTURAL GREENHOUSE GASES

Opportunities to mitigate enteric CH₄ emissions through:

- Improving animal selection and breeding
- Improving animal feed/feeding
- Modifying the rumen microbiome
- Improving animal health care and resilience
- Increasing animal and farm-system productivity

...the flagship is a way of drawing these opportunities together in a coordinated, globally collaborative way

Principles of a flagship

ON AGRICULTURAL GREENHOUSE GASE

- Unique GRA added value
- Inclusive
- Relevant projects that benefit the majority
- Solution-focused, linking clearly to mitigation practices
- Multifaceted co-benefits with improved livelihoods, food security and adaptation
- Build capacity and capability
- Add value to existing efforts and increase the scope and depth of future efforts

The Enteric Fermentation Flagship

- 1. Development of solutions for reducing enteric CH4 emissions
- 2. Improved quantification of livestock emissions
- 3. Identification, testing and implementation of mitigation solutions

1. Development of research solutions

Some examples:

- Animal selection: data sharing & analysis to help develop genetic/genomic markets for low emission traits
- Feed: identification, testing and improved quantification of low emitting feeds
- **Microbiome:** improved understanding of enteric CH₄ formation, characterisation and manipulation
- Animal health: exploring the links between improved health, GHG outcomes and food security
- Manure management: ?

Some examples:

- Improved emission factors: determining methane yield (Y_m) in different systems and feeds
- Improved activity data: low-cost, innovative generation of data to support Tier 2 approaches
- Livestock Tier 2 inventory development: guidance and support to countries for developing practical and defensible systems within data and resource constraints

3. Identification, testing and implementation of solutions

Some examples:

- Identification of locally appropriate mitigation solutions: drawing on work area (1) and (2)
- **Pilot testing of solutions:** impact on mitigation, economics, food security, synergies with adaptation
- Implementation: communication and promotion of tested mitigations, mainstreaming mitigation actions into development projects, systems to demonstrate achievement of INDCs

Improved Y_m estimates for cattle diets containing a high % of byproducts

Leader: Person X, Country Y

Countries involved: GRA countries in S/S-E Asia

Brief description: establish a searchable database that will allow the extraction of Ym values that better reflect local circumstances than current IPCC default values...database coordinator...country contact points...co-authored paper...

Benefits: supports policy needs...develops capability...builds on existing resources...tangible product

Resourcing needs: [roles/responsibilities/\$\$]

Resourcing mechanisms: LEARN post-doctoral award...in-kind contribution...

Key partners and existing resources/projects: FNN database...IPCC emission factors database...etc

Implementing GHG mitigation practices on smallholder dairy farms in S.E. Mars region

- Work with policy and science to improve national dairy cattle GHG inventory methodology.
- Collect local data to identify opportunities for better advancing livelihoods and enhancing food security while simultaneously reducing GHG emissions.
- Prioritise interventions & develop projects for small scale piloting & demonstration of priority actions with role out on a larger scale if successful. Identify and seek funding from existing international sources e.g. GEF, GCF for this.
- Experienced scientists from GRA countries to assist local scientists in the development of project proposals. Work in close coordination with GRA Partners (CCAFS, FAO etc.).
- Funding for GRA involvement in GHG inventory development & assistance with project development to be provided in-kind on a voluntary basis by individual countries.

The development of improved generic CH4 prediction algorithms for use in national inventories.

- Builds on existing feeds database more countries, more data, improved information of feed effects on CH4 across a wider range of diets.
- Development of generic prediction algorithms that rely on simple feed characterisation for better quantification CH4 emissions where direct measurements are limited but feed characterisation is possible.
- In-kind contribution for supply of information, cash needed for maintenance and analysis of the database and employment of a project coordinator (Post doc capability building opportunity).

The feeding & testing of bioactive compounds for use in and confined and grazing dairy cows with an emphasis on both mitigation and productivity impacts

- Joint GRA research call, each country to fund its own researchers.
- All projects to involve a minimum of three GRA countries.
- Formal evaluation process.

Identifying low emitting sheep and cattle using microbial profiles

- Build on existing GPLER4 project that is funded to work on identifying a rapid, noninvasive method of identifying low emitting animals.
- Central sequencing and analysis of rumen and mouth swab samples submitted from participating countries, data linked to individual animal methane measurements.
- Information on relationships between CH₄ and microbial populations available to all participants.
- Funding mainly in-kind from participating countries for sample collection and CH4 measurements, with the cash needed to fund the central sequencing and analysis contributed on a pro rata basis based on the number of samples submitted.

GLOBAL RESEARCH ALLIANCE ON AGRICULTURAL GREENHOUSE GASES

What next?

Views welcome on the structure of the flagship:

- Are the main components right?
- Can you see how your country could engage?
- Have we missed anything?
- What are specific priority projects?

After lunch we will use breakout groups to develop each component, populating them with ideas for short and longer term priority projects

Developing specific project proposals

GLOBAL RESEARCH ALLIANCE ON AGRICULTURAL GREENHOUSE GASES

Guidelines to work to in the breakout groups

- 1. Be realistic tangible benefits in the short-medium term
- 2. Build on existing projects and data
- 3. Build on existing databases, or develop new ones
- 4. Demonstrate concrete outcomes beneficial to the majority
- 5. Is there a committed (and resourced) leader?
- 6. Is there a resourcing plan for the project?