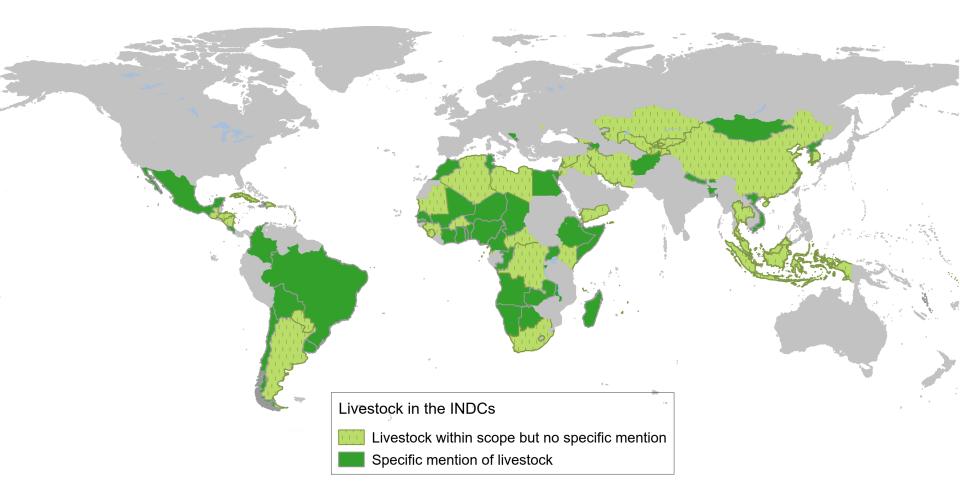


MRV OF LIVESTOCK GHG EMISSIONS: CURRENT PRACTICES AND OPPORTUNITIES FOR IMPROVEMENT

Andreas Wilkes Lini Wollenberg Washington DC, April 2017

RESEARCH PROGRAM ON Climate Change, Agriculture and Food Security



ON AGRICULTURAL GREENHOUSE GASES

92 DEVELOPING COUNTRIES INCLUDED LIVESTOCK

EMISSIONS IN THEIR NDCS

ANALYSIS OF MRV OF LIVESTOCK EMISSIONS

Collaboration of CCAFS, GRA, FAO and the World Bank with UNIQUE Forestry and Land Use

- What is the current state of MRV for livestock emissions?
- What are the barriers and opportunities for improvement to meet countries' needs?
 - 1. Review Paper, analysis of national comms, survey, interviews—finalized by May 2017
 - 2. "Making MRV work" workshop Feb 2017

MRV IN THE UNFCCC - PRE PARIS

M

IPCC 1996, 2000 GPG, 2003 LULUCF

R

Developed Country Parties	Developing Country Parties
National Communication every 4	National Communication every 4 years, with
years	flexibility
Biennial Report every 2 years	Biennial Update Report every 2 years, with
	flexibility
National GHG Inventory annually	

V

Reporting	Verification					
National Communication	Consultative Group of Experts					
Biennial Update Report	International consultation and analysis &					
	facilitative sharing of views					

MRV IN THE UNFCCC – POST PARIS (2015)

M

- all Parties shall account for their NDCs
- take into account existing methods and guidance

R

- all Parties shall regularly submit national inventory reports and information on implementation and achievement of NDCs
- developing country parties should regularly communicate progress made on implementing capacity building plans, policies, actions or measures

V

- "facilitative, multilateral consideration"
- Global stocktake every 5 years, starting 2023

Ad Hoc Working Group on the Paris Agreement (APA) to report modalities and procedures for the enhanced transparency

MRV IN THE UNFCCC - PRINCIPLES

How to MRV?

Principle	Interpretation			
Transparency	Assumptions and methodologies clearly explained			
Consistency	Same methodologies used for all years			
Comparability	Use agreed methodologies and reporting formats			
Completeness	All GHG sinks and sources are covered			
Accuracy	No systematic over- or under-estimatation, uncertainties are reduced as far as practicable			

Additional considerations?

Cost-effective	Make cost effective use of resources
Precision of	Ability to describe the trend in emissions over time
the trend	

MRV IN THE UNFCCC - FLEXIBILITY

Characteristics of requirements

1. UNFCCC: "Flexibility for those countries that need it"

"should", "are encouraged to"...

2. IPCC: Tier 1, Tier 2, Tier 3

"should", "may", "are encouraged to"...

- → Flexibility allows improvements over time, but does not answer what is acceptable MRV practice or how to improve over time
- → Given this flexibility, how can MRV of livestock GHG emissions best serve national policy objectives?

Status of inventory practices

- 119 out of 140 developing countries using Tier I (85%) approaches that generally do not capture mitigation
- Most countries are still designing their MRV systems for mitigation of livestock emissions
- Each country has made progress on different aspects of MRV design
- No 'one size fits all' solution

Diverse structures for Tier 2

Argentina

- 8 agro-ecological and climatic regions
- Breeding and fattening systems identified/region
- Production systems modeled (activity, diet, reproduction and production)
- Aggregate results cross-checked against regional, census and agricultural production data.

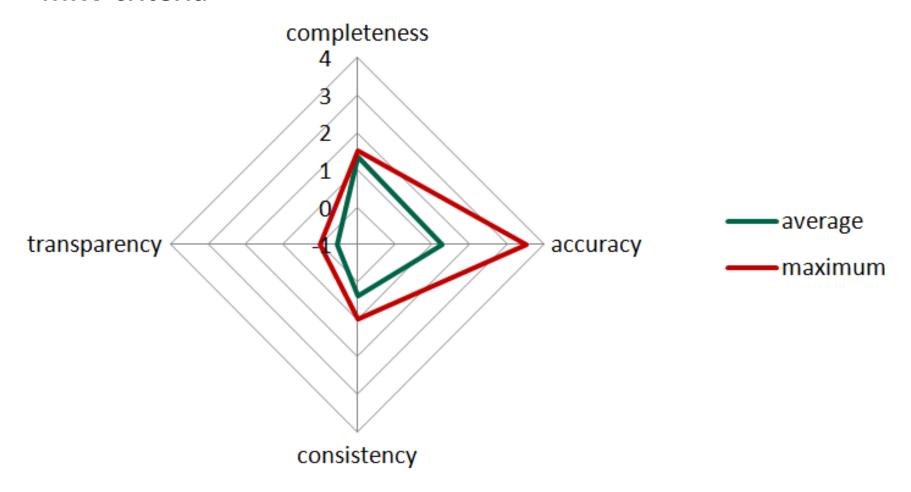
Bolivia

- 3 climatic regions (altiplano, valles and tropics)
- Cattle and sheep sub-classes (e.g. dairy cattle, non-dairy cattle, young cattle and oxen) using expert opinion in region.
- Data on feed rations, apparent digestibility of forage and feed and other production data (e.g. milk yields, live weights)/region obtained from publications or government agencies.

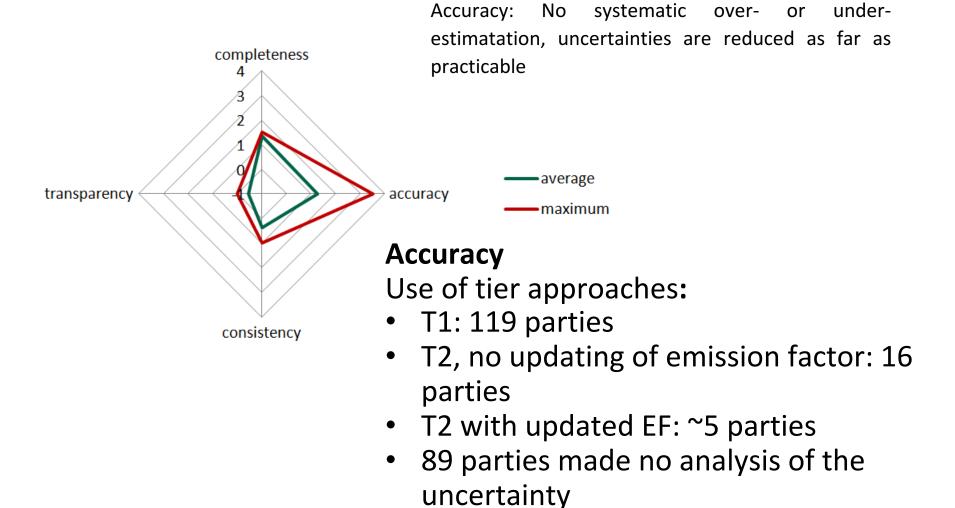
Parameters & data sources for updating Tier 2 Efs by some countries

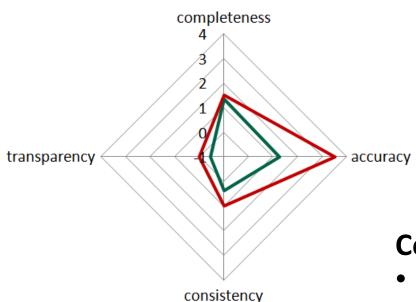
Country	Туре	Parameters						
		Live weight	Weight gain	Milk yield	Fat content in milk	Diet composition	Pregnancy rate	Feeding situation
Denmark	Dairy cattle	S	S	S	S	S		S
Poland	Dairy cattle			S	S	E	S	
Portugal	Dairy cattle			S	S		S & X	L&S
Portugal	Cattle	S						
Czech	Cattle	E	Е	S	S			E
Slovakia	Cattle	L & S		S		E	E	

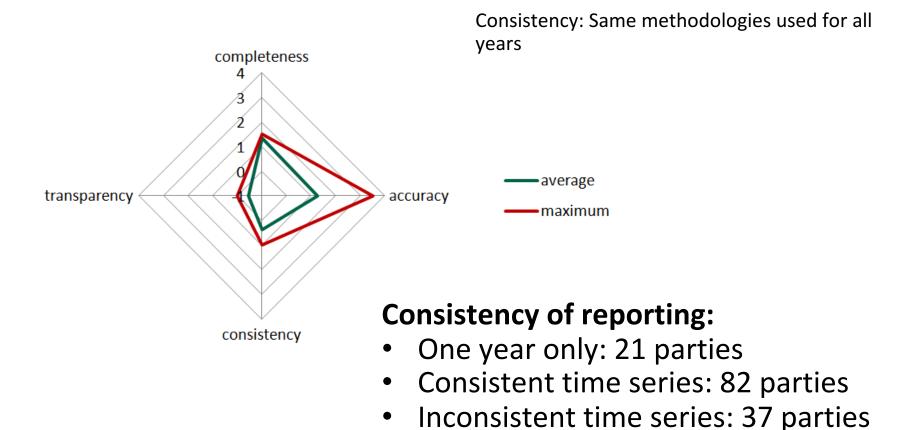
S= statistics; E = expert judgment; L=literature data; X: extrapolated



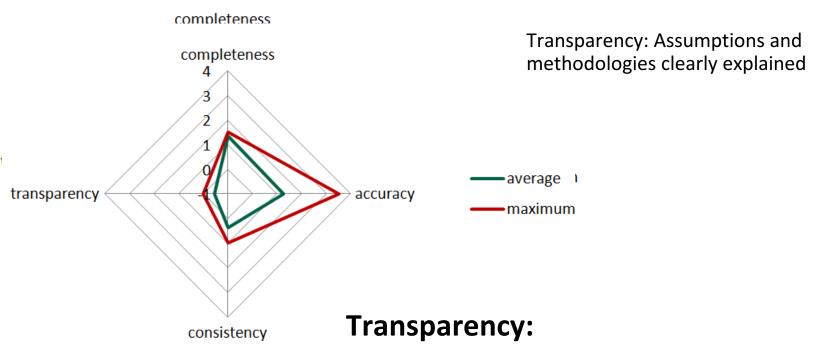
Practical constraints to inventory improvement


	Chile	Colombia	Ethiopia	Indonesia	Philippines	Vietnam
Human resource allocation to inventory work	✓	✓				
Institutional structures for inventory related research	√		√			
Weak links with national data providers (e.g. statistics agencies)	√		√	√		√
Lack of data on diverse farm conditions			√			✓
Limited capacities for Tier 2 research			✓			√
Sustainability of finance for inventory agencies		✓				
Finance for activity data collection or emission research			✓	✓	√	√


MRV criteria


Completeness: All GHG sinks and sources are covered

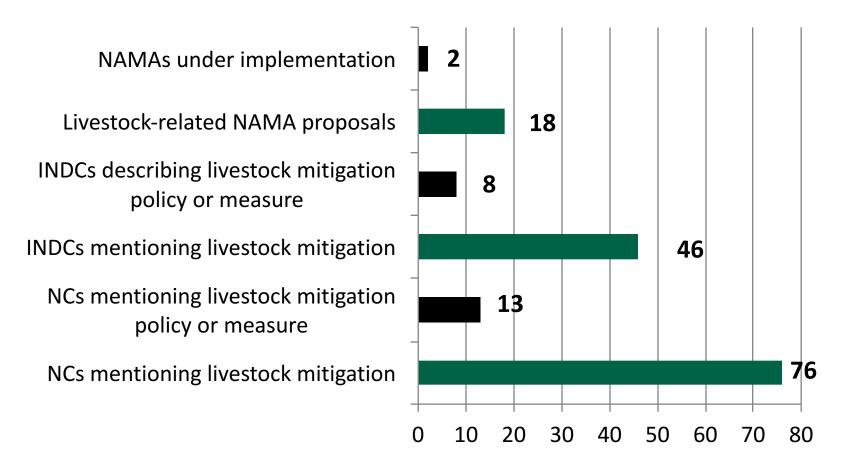
----average


Completeness

- Enteric fermentation: 139 parties
- Manure management CH₄: 134 parties
- Manure management N₂O: 115 parties
- Ag soil N₂O: 116 (PD?)

- Activity data reported: 99 parties
- Emission factors reported: 117 parties
- Reason for source omission: 12/32 parties

IS IMPROVING ACCURACY THE TOP PRIORITY?


	Uncertainty of activity data (%)	Uncertainty of emission factor (%)	Combined uncertainty (%)
Selected Developing	12	26	28
Country Parties (n=12)	(0 - 40)	(10 - 50)	(14.14 – 58.30)
Selected Developed	5	24	24
Country Parties (n=35)	(0 - 20)	(0 – 89)	(5.00 – 89.02)

Q1: What policy objectives are served by increasing accuracy?

Q2: If a country has limited resources for inventory improvement, should accuracy be a priority or should the focus be on trends?

Status of intentions and actions

→ How are countries thinking about MRV of mitigation actions?

Fundamental technical issues

- Determining GHG sinks and sources affected by livestock mitigation actions
- Baseline setting
- Sources of EF and activity data
- Levels of accuracy and uncertainty

Linking MRV of NDCs to national inventories and other benefits

1. Ideally national inventory and MRV on NDCs are compatible

But:

- (1) most countries' national inventory do not update T1 or T2 emission factors, so cannot reflect effects of mitigation actions on enteric fermentation;
- (2) most countries' NDCs are compared to a BAU scenario, not inventory base year;
- (3) MRV of action may use higher resolution AD & EFs than inventory;
- (4) actions may affect many sinks and sources in different parts of the inventory.
- 2. MRV of non-GHG benefits

Institutional coordination

How to integrate data management systems among

- 1. different government agencies
- government and the private sector (including finance sector)
- 3. project-level and national-level MRV, and
- international and national institutions.

What is driving decisions at the moment?

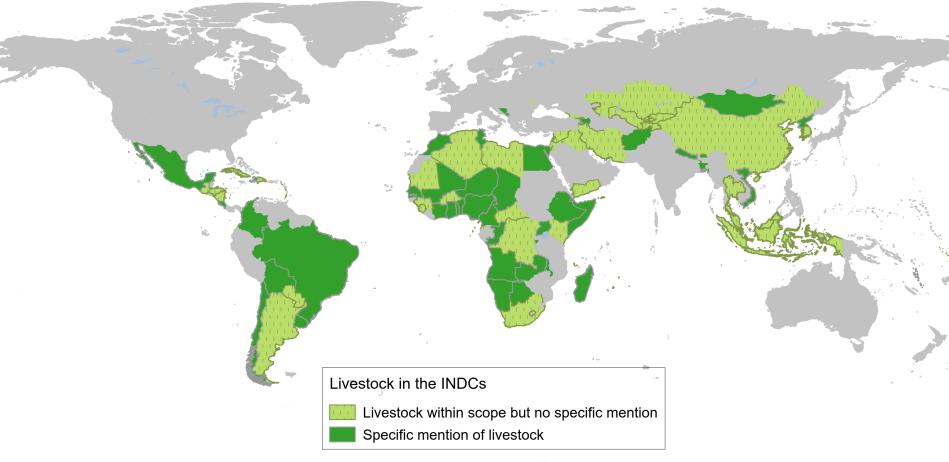
UNFCCC guidance very general

Most climate finance sources have not developed specific requirements

- → Country stakeholder processes determining priorities
- → Capacities and resources are determining progress

RECOMMENDATIONS

- Expand support for analysis, identification and implementation of economically viable, farmer-focused livestock mitigation options
- Consider updated Tier 2 approaches using activity and livestock production data that reflect changing livestock systems and their productivity
- 3. Improve synergies among statistical systems, other livestock data systems and MRV
- Share country experiences on priorities for livestock MRV system development
- 5. Promote MRV innovation at different level of mitigation action and MRV (project, jurisdictional, sectoral, national)


With many thanks!

andreas.wilkes@unique-landuse.de

LIVESTOCK AND THE NDCS

- 92 developing countries include mitigation of livestock emissions in their NDCs
- 38 on enteric fermentation, 30 on manure emissions or biogas mitigation measures, and 31 on grasslands, pastures or silvopastoral practices

GHG INVENTORY IMPROVEMENT

What strategy if accuracy is the priority?

Key source analysis

Improving data on livestock populations

Improving characterization of livestock populations & production systems

Improving data on feed intake and digestibility

Tracking change in livestock performance

GHG INVENTORY IMPROVEMENT

What strategy if a precise trend is the priority?

Analysis of sector trends, policies and plans

Identify
livestock
subpopulations
relevant to
policy
objectives

Establish inventory structure reflecting policy priorities

Use available data to produce emission estimates

Assess data quality and improve accuracy over time

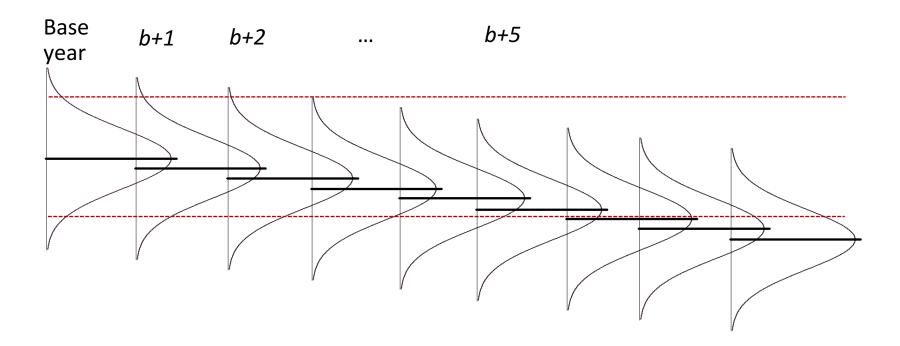
MRV IN THE UNFCCC (2)

MRV of what?

GHG emissions (enteric f., manure mgt., urine & dung deposit)

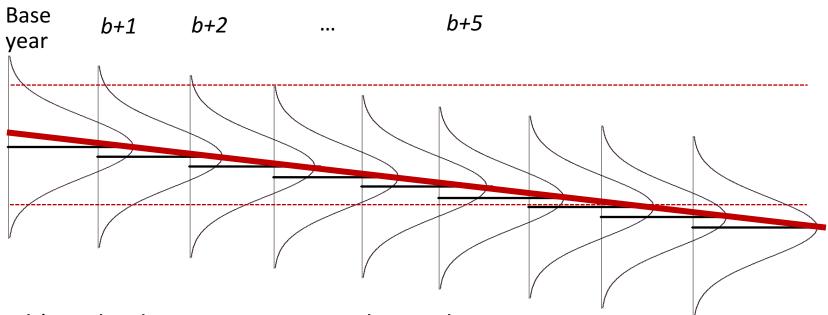
- National Inventory Report
- in National Communications
- summary/update in BUR

Mitigation actions


- NC: Information on measures, methods, results, scenarios, institutions
- BUR: objectives, methods, steps, progress, results, emission reductions "to the extent possible"

MRV arrangements

- institutions & systems for MRV
- approach used for measurement (incl. methods)
- approach used for verification (incl. experts & mechanisms)


IMAGINE IF...

a) With combined AD & EF uncertainty ca. 28%, for the average developing country, there would have to be a large decrease in the mean estimate before there was any statistically significant difference →

IMAGINE IF...

- b) In checking Kyoto Protocol compliance, uncertainty is not considered, only the trend
- c) with livestock in NDCs, describing a precise trend is important d) If the inventory uses constant T1 or T2 emission factors, the

trend is only determined by livestock numbers & herd structure, but productivity gains over time are one of the big opportunities for livestock mitigation

