The Feed and Nutrition Network

Global Research Alliance on Agricultural GHG

International collaboration in database development:

Research Networks, including FNN

The Feed and Nutrition Network

Department of Animal Science

0

Penn State + Ag Sciences + Animal Science + Feed and Nutrition Network - Ruminants

Feed and Nutrition Network - Ruminants

News	Feed Nutrition Network News			
Ongoing Activities	April 2016 LRG Newsletter and Report April 4, 2016			
Current Research				
About	2016 FNN Meeting January 3, 2016			
Directory	The 2016 FNN meeting was held in conjunction with GGAA in Melbourne,			
Contact Us	Australia, February 14-18th, 2016.			

THE GLOBAL NETWORK PROJECT

A. N. Hristov, E. Kebreab, M. Niu, J. Oh, C. Arndt, A. Bannink, A. R. Bayat, A. F. Brito, D. Casper, L. A.
Crompton, J. Dijkstra, P. C. Garnsworthy, N. Haque, A. L.
F. Hellwing, P. Huhtanen, M. Kreuzer, B. Kuhla, P. Lund, J. Madsen, S. C. McClelland, P. Moate, C. Muñoz, N.
Peiren, J. M. Powell, C. K. Reynolds, A. Schwarm, K. J. Shingfield, T. M. Storlien, M. R. Weisbjerg

The GLOBAL NETWORK project

 A 4-yr project funded through The Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI); US national funding through USDA-NIFA

Objectives:

- Create, update, and expand animal and feed databases for mitigation of enteric methane
- Gain understanding of the contribution of genetic and microbial factors to variation in enteric methane production
- Validate markers of enteric methanogenesis for the development and monitoring of methane mitigation strategies in ruminants

The GLOBAL NETWORK project

- Create, update, and expand a database of mitigation strategies aimed at improving dietary N utilization and lowering N excretion and ammonia and nitrous oxide emissions from manure
- Develop Standard Operating Procedures (SOP) and guidelines for conducting and assessing data from in vitro and in vivo studies designed to evaluate nutritional strategies for mitigation of GHG and NH₃
- Develop new and evaluate existing models for predicting methane emission and N excretions under various nutritional, animal, and farm management scenarios
- Identify and recommend GHG and NH₃ mitigation technologies that are practical and feasible

Research method reviews

Animal Feed Science and Technology 216 (2016) 1–18

Review article

Design, implementation and interpretation of *in vitro* batch culture experiments to assess enteric methane mitigation in ruminants—a review

Yáñez-Ruiz D.R.^{a,*}, Bannink A.^b, Dijkstra J.^c, Kebreab E.^d, Morgavi D.P.^e, O'Kiely P.^f, Reynolds C.K.^g, Schwarm A.^h, Shingfield K.J.^{i,j}, Yu Z.^k, Hristov A.N.¹

Research method reviews

Animal Feed Science and Technology 219 (2016) 13-30

Review article

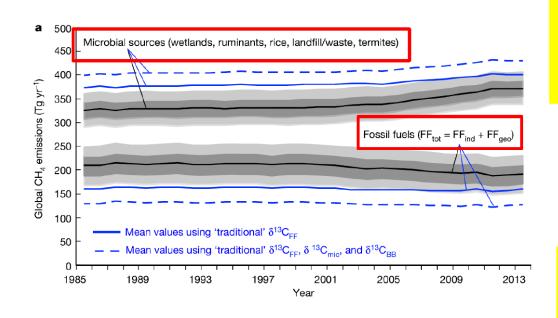
Review of current *in vivo* measurement techniques for quantifying enteric methane emission from ruminants

^b, J. Dijkstra^c, D.R. Yáñez-Ruiz^d,

K.J. Hammond^a, L.A. Crompton^a, A. Bannink^b, J. Dijkstra^c, D.R. Yáñez-Ruiz^d, P. O'Kiely^e, E. Kebreab^f, M.A. Eugène^g, Z. Yu^h, K.J. Shingfield^{i,j}, A. Schwarm^k, A.N. Hristov¹, C.K. Reynolds^{a,*}

ARTICLE IN PRESS

J. Dairy Sci. 101:1–20 https://doi.org/10.3168/jds.2017-13536


© 2018, THE AUTHORS. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

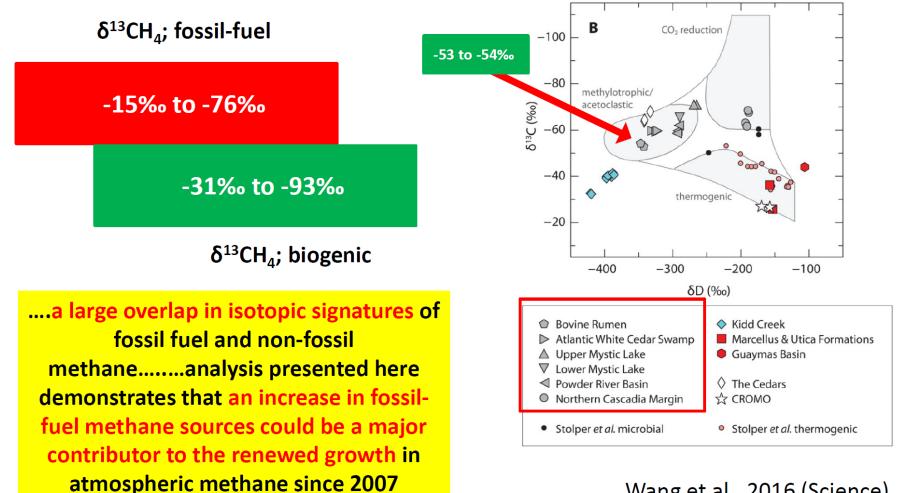
Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models¹

A. N. Hristov,*² E. Kebreab,† M. Niu,† J. Oh,* A. Bannink,‡ A. R. Bayat,§ T. B. Boland,# A. F. Brito, D. P. Casper,¶ L. A. Crompton,\$ J. Dijkstra,€ M. Eugène,¥ P. C. Garnsworthy,** N. Hague,†† A. L. F. Hellwing, # P. Huhtanen, § M. Kreuzer, ## B. Kuhla, III P. Lund, # J. Madsen, # C. Martin, ¥ P. J. Moate,¶¶ S. Muetzel,\$\$ C. Muñoz,€€ N. Peiren,¥¥ J. M. Powell,*** C. K. Reynolds,\$ A. Schwarm,## K. J. Shingfield, +++³ T. M. Storlien, ±±± M. R. Weisbjerg, ±± D. R. Yáñez-Ruiz, §§§ and Z. Yu### *Department of Animal Science, The Pennsylvania State University, University Park 16802 †Department of Animal Science, University of California, Davis 91616 ‡Wageningen Livestock Research, Wageningen University and Research, 6700 AH Wageningen, the Netherlands SMilk Production Solutions, Green Technology, Natural Resources Institute Finland, 31600 Jokioinen, Finland #School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland IDepartment of Nutrition, Agriculture, and Food Systems, University of New Hampshire, Durham 03824 ¶Furst McNess Company, Freeport, IL 61032 \$School of Agriculture, Policy and Development, University of Reading, Earley Gate, RG6 6AR, United Kingdom €Animal Nutrition Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands ¥UMR Herbivores, INRA, VetAgro Sup, Université Clermont Auvergne, 63122 Saint-Genès-Champanelle, France **School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, United Kingdom ††Department of Large Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark ttDepartment of Animal Science, Aarhus University, Foulum, 8830 Tiele, Denmark §§Department of Agricultural Science for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden ##ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland IllInstitute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany ¶¶Agriculture Victoria, Ellinbank, Victoria 3821, Australia \$\$Ag Research, Palmerston North 4442, New Zealand €€Instituto de Investigaciones Agropecuarias, INIA Remehue, Osorno, Región de Los Lagos 5290000, Chile ¥¥Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, 9090 Melle, Belgium ***USDA-ARS US Dairy Forage Research Center, Madison, WI 53706 †††Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, United Kingdom tttDepartment of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, As 1432, Norway §§§Estación Experimental del Zaidin, CSIC, 1, 18008 Granada, Spain ###Department of Animal Sciences, The Ohio State University, Columbus 43210

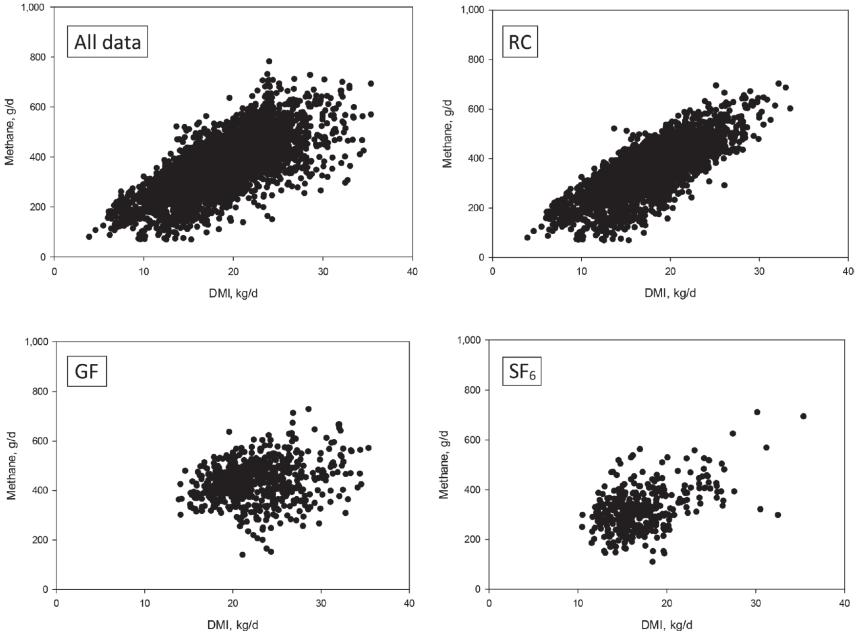
Global methane inventories

Schwietzke et al., 2016 (Nature)

.....the recent temporal increases in microbial emissions have been substantially larger (than from fossil fuel)


Schaefer et al., 2016 (Science)

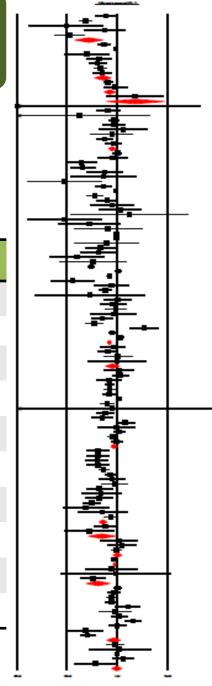
.....Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands



How reliable are the isotope data?

Turner et al., 2017 (PNAS)

Wang et al., 2016 (Science)


Databases

- Databases being developed:
 - Individual animal database (dairy, beef, small ruminants)
 - Treatment means database
 - Microbial database
- Treatment means database
 - 1,796 observations from 410 references
 - From 1964 to 2016
 - MitiGate (<u>http://mitigate.ibers.aber.ac.uk/</u>) database merged; raw data provided by authors
 - 31 treatments/treatment groups identifies

Treatment means database

Preliminary data for cattle (CH₄, g/d):

Treatment	Effect, g/d	SE	Lower limit	Upper limit	P-value
3NOP	-85.37	21.70	-127.90	-42.84	< 0.001
BCM	-43.80	12.70	-68.69	-18.91	< 0.001
Essential oil	-15.80	5.29	-26.17	-5.44	0.003
Fatty acid	-24.04	3.15	-30.21	-17.87	< 0.001
Fumaric acid	-14.93	10.48	-35.47	5.61	0.15
Ionophore	-10.91	4.72	-20.16	-1.67	0.02
Nitrate	-43.10	6.09	-55.03	-31.17	< 0.001
Nitroethane	-46.23	20.75	-86.89	-5.56	0.03
Probiotic	-0.13	6.73	-13.32	13.07	0.98
Saponin	-57.97	18.16	-93.56	-22.38	0.01

PRIMARY RESEARCH ARTICLE

WILEY Global Change Biology

Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database

Mutian Niu¹ | Ermias Kebreab¹ | Alexander N. Hristov² | Joonpyo Oh² | Claudia Arndt³ | André Bannink⁴ | Ali R. Bayat⁵ | André F. Brito⁶ | Tommy Boland⁷ | David Casper⁸ | Les A. Crompton⁹ | Jan Dijkstra¹⁰ | Maguy A. Eugène¹¹ | Phil C. Garnsworthy¹² | Md Najmul Haque¹³ | Anne L. F. Hellwing¹⁴ | Pekka Huhtanen¹⁵ | Michael Kreuzer¹⁶ | Bjoern Kuhla¹⁷ | Peter Lund¹⁴ | Jørgen Madsen¹³ | Cécile Martin¹¹ | Shelby C. McClelland¹⁸ | Mark McGee¹⁹ | Peter J. Moate²⁰ | Stefan Muetzel²¹ | Camila Muñoz²² | Padraig O'Kiely¹⁹ | Nico Peiren²³ | Christopher K. Reynolds⁹ | Angela Schwarm¹⁶ | Kevin J. Shingfield²⁴ | Tonje M. Storlien²⁵ | Martin R. Weisbjerg¹⁴ | David R. Yáñez-Ruiz²⁶ | Zhongtang Yu²⁷

¹Department of Animal Science, University of California, Davis, CA, USA

²Department of Animal Science, The Pennsylvania State University, University Park, PA, USA

³Environmental Defense Fund, San Francisco, CA, USA

⁴Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands

⁵Milk Production Solutions, Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, Finland

⁶Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, NH, USA

⁷School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland

⁸Furst McNess Company, Freeport, IL, USA

9School of Agriculture, Policy and Development, University of Reading, Reading, UK

¹⁰Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands

¹¹UMR Herbivores, INRA, VetAgro Sup, Université Clermont Auvergne, Saint-Genès-Champanelle, France

¹²School of Biosciences, University of Nottingham, Loughborough, UK

¹³Department of Large Animal Sciences, University of Copenhagen, Copenhagen, Denmark

¹⁴Department of Animal Science, Aarhus University, Tjele, Denmark

¹⁵Department of Agricultural Science for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden

¹⁶ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland

¹⁷Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Mecklenburg-Vorpommern, Germany

¹⁹Teagasc, Agriculture and Food Development Authority, Carlow, Ireland

²⁰Agriculture Research Division, Department of Economic Development, Jobs, Transport and Resources, Melbourne, Vic., Australia

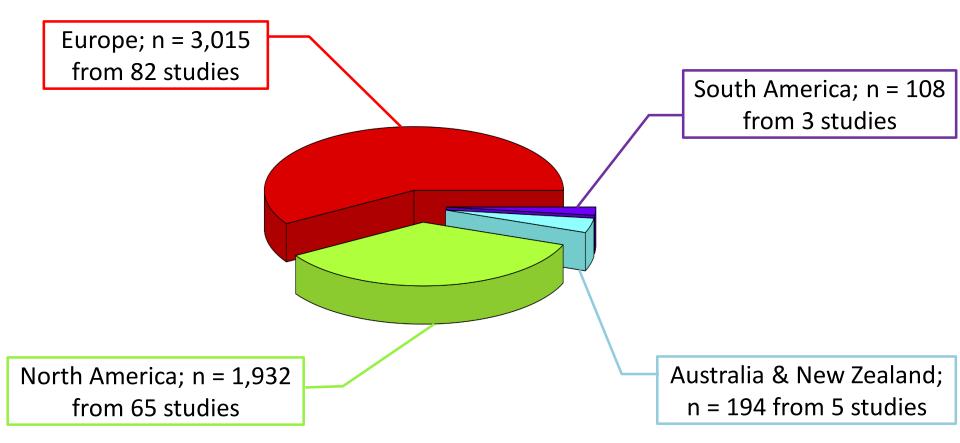
²¹Ag Research, Palmerston North, New Zealand

²²Instituto de Investigaciones Agropecuarias, INIA Remehue, Osomo, Chile

²³Animal Sciences Department, Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium

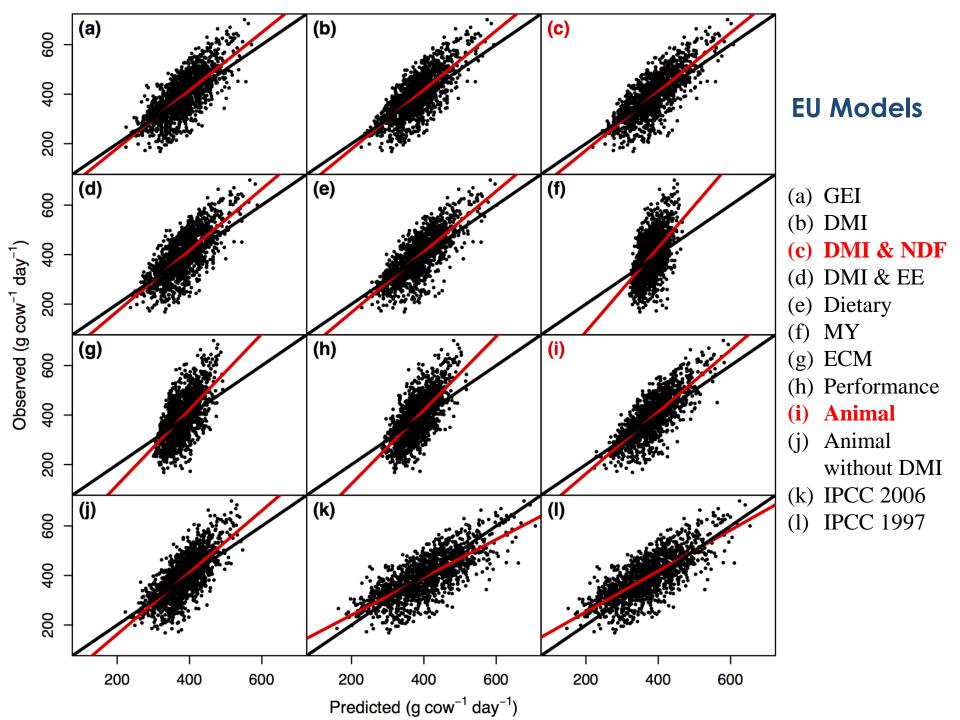
²⁴Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK

²⁵Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway


²⁶Estación Experimental del Zaidin (CSIC), Granada, Spain

²⁷Department of Animal Sciences, The Ohio State University, Columbus, OH, USA

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2018 John Wiley & Sons Ltd

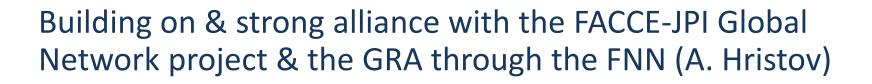

¹⁸Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA

Database (n=5,249)

CH₄ Production Models

	Model Develop	Model Performance	
Level	Model	Predictor	RMSPE, %
1	GEI Level	GEI	15.8
2	DMI Level	DMI	15.6
3	DMI & NDF Level	DMI, NDF	14.5
4	DMI & EE Level	DMI, EE	15.8
5	Dietary Level	DMI, EE, NDF	14.8
6	Dietary Composition Level	EE, NDF	24.1
7	MY Level	MY	20.1
8	ECM Level	ECM	18.7
9	Performance	ECM, MP	17.7
10	Animal Level	DMI, EE, NDF, MF, BW	14.5
11	Animal without DMI Level	EE, NDF, MP, ECM, BW	16.3
-	IPCC, 2006	GEI	16.1
-	IPCC, 1997	GEI	16.6

J. Dairy Sci. Invited Review


NITROGEN IN RUMINANT NUTRITION: A REVIEW OF

MEASUREMENT TECHNIQUES

A. N. Hristov^{a,1}, A. Bannink^b, A. R. Bayat^c, L. A. Crompton^d, J. Dijkstra^e, P. Huhtanen^f, E. Kebreab^g, M. Kreuzer^h, M. McGeeⁱ, P. Nozière^j, C. K. Reynolds^d, A. Schwarm^h, K. J. Shingfield^{k*}, D. R. Yáñez-Ruiz¹, Z. T. Yu^m

CEDERS - Capturing Effects of Diet on Emissions from Ruminant Systems

ERAGAS project
October 2017 till November 2020
9 eligible partners; various supporting partners
Total 3-year budget € 3.527.000, -

MONITORING & MITIGATION OF GREENHOUSE GASES FROM AGRI- AND SILVI-CULTURE

Capturing Effects of Diet on Emissions from Ruminant Systems

ERA-GAS

MONITORING & MITIGATION OF GREENHOUSE GASES FROM AGRI- AND SILVI-CULTURE