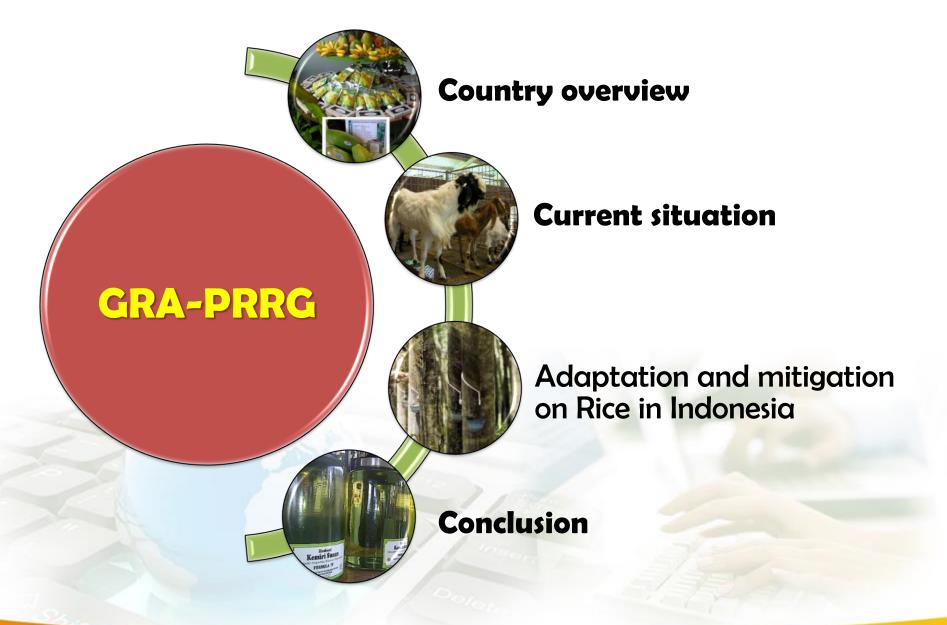
Asia Sub-Group Meeting of GRA PRRG

the Workshop "Rice Landscapes and Climate Change: Options for mitigation in rice-based agroecosystems and the scaling-up of climate-smart rice cultivation

13 Oktober 2018

INDONESIA COUNTRY REPORT ON

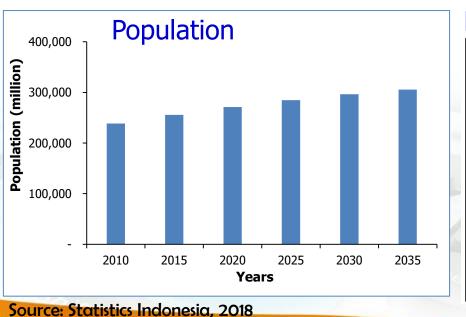

Climate change adaptation and mitigation in paddy rice

Indonesia Agency for Agriculture Research and Development – IAARD Ministry of Agriculture

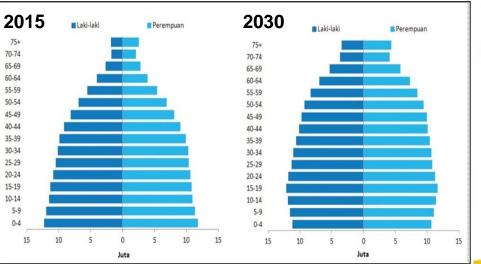
Ministry of Agriculture Indonesian Agency for Agricultural Research and Development - IAARD SCIENCE.INNOVATION.NETWORKS www.litbang.pertanian.go.id

Ministry of Agriculture Indonesian Agency for Agricultural Research and Development - IAARD SCIENCE.INNOVATION.NETWORKS

Country overview



Ministry of Agriculture Indonesian Agency for Agricultural Research and Development - IAARD

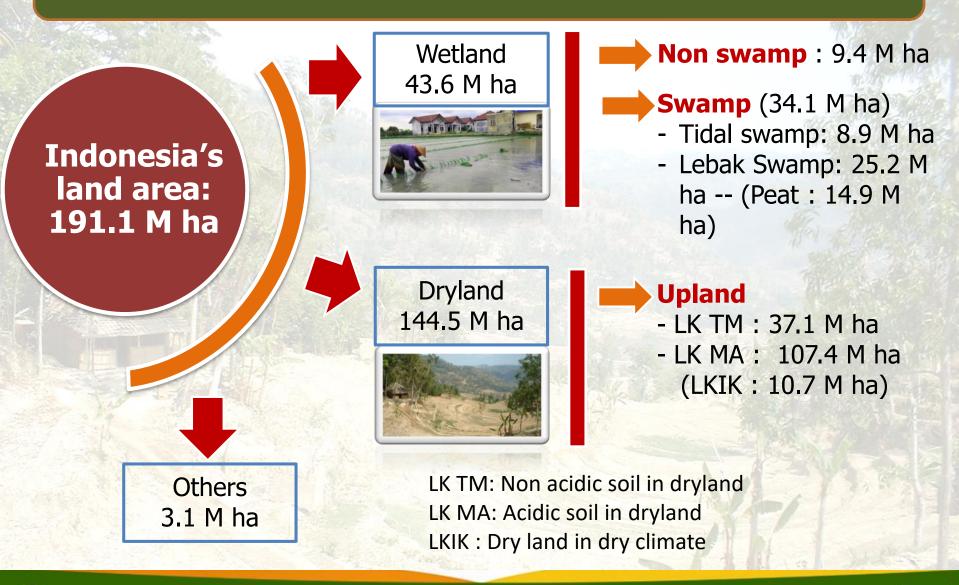

Demographics of Indonesia

Sumber | Sensus Penduduk (SP) 2010 dan Proyeksi Penduduk Infonesia 2010-2035(Source: 2010 Population Census and Indonesia Population Projection 2010-2035

Population based on age and gender

Source: Ministry of National Development Planning (2015)

SCIENCE.INNOVATION.NETWORKS



Ministry of Agriculture

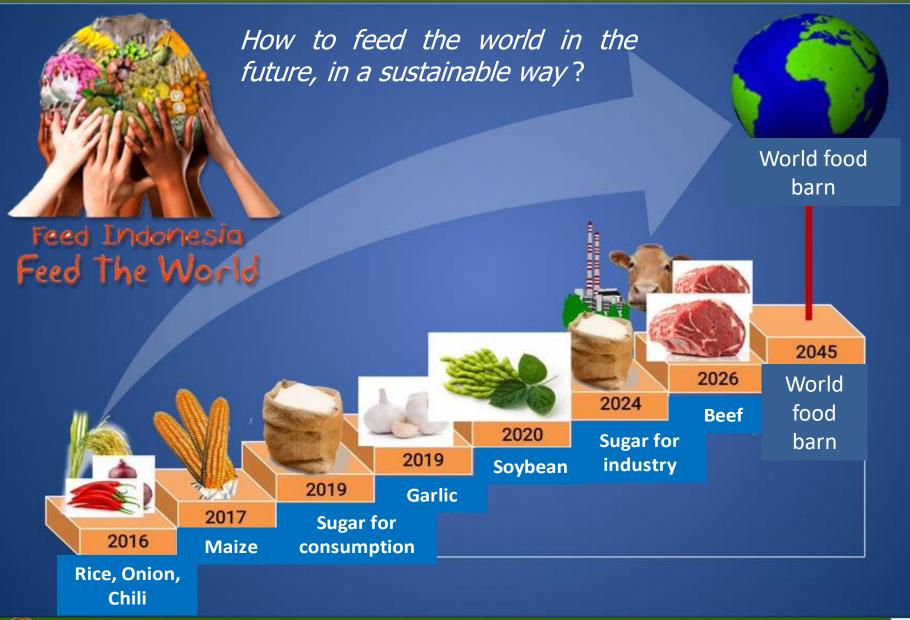
Indonesian Agency for Agricultural Research and Development - IAARD

Indonesia Land resources

Ministry of Agriculture

Indonesian Agency for Agricultural Research and Development - IAARD

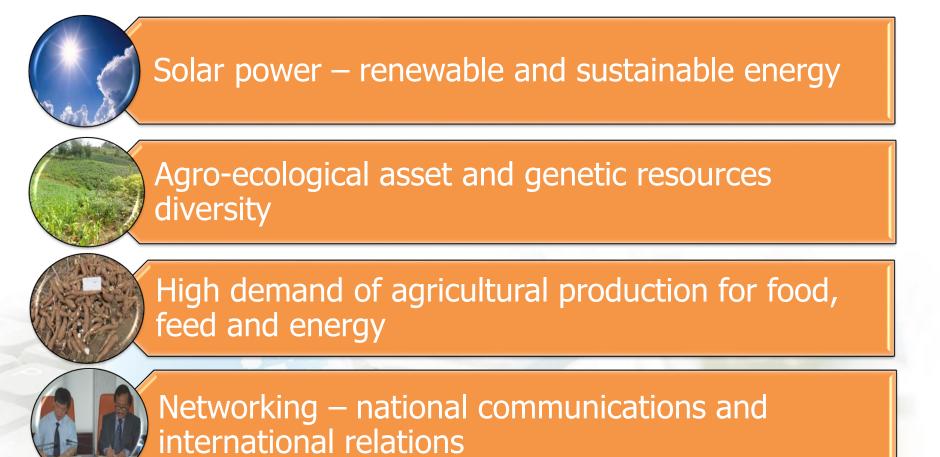
SCIENCE.INNOVATION.NETWORKS



Current situation

Ministry of Agriculture Indonesian Agency for Agricultural Research and Development - IAARD

larget of Indonesia food self sufficiency


Ministry of Agriculture

Indonesian Agency for Agricultural Research and Development - IAARD

SCIENCE.INNOVATION.NETWORKS

Opportunities and Resources for Agricultural development

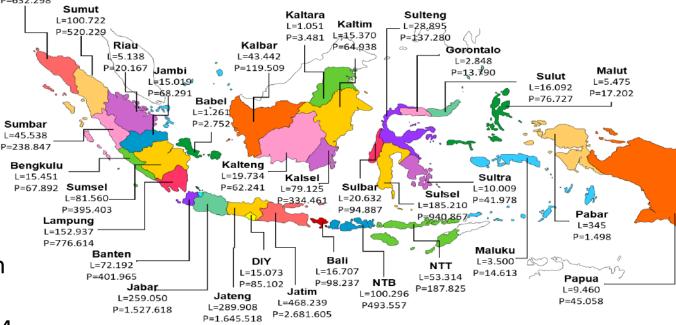
Ministry of Agriculture Indonesian Agency for Agricultural Research and Development - IAARD SCIENCE.INNOVATION.NETWORK

www.litbang.pertania

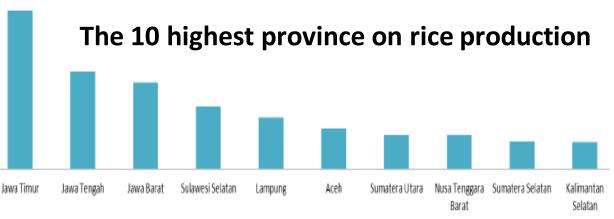
The optimization of Indonesia Resources for Agricultural development

Issues	Problem solving
1. Climate change	1. Mitigation and adaptation
2. Food security and safety	2. Food diversity, enhancing of product quality and agriculture productivity
3. Global market access	3. Increasing of product innovation, product quality standard and availability
4. Competition for land and water resources	4. Optimizing of land and water resources
 5. √ Demand vs production ✓ Food vs energy ✓ Ineffective farming system 	5. Sustainable agricultural bio- industry

AGRO INOVASI


2014	2015	2016	2017*
70,84	75,39	79,35	81,38

14.9%


Juta Ton

Growth of rice cultivation areas during 2015-2017 16.39 M Ha (increase 2.34 M ha/16.65%) → Rice cultivation index 1.73% (increase 2.95%)

Target of growth rice cultivation area in 2018: 1.75 M ha → 80.08 M ton

Note: L = harvested area, P = rice production

Total of rice harvested area: 2,252,962 ha

Yield potential: 11,812,447 ton (March 2018)

Ministry of Agriculture

Indonesian Agency for Agricultural Research and Development - IAARD

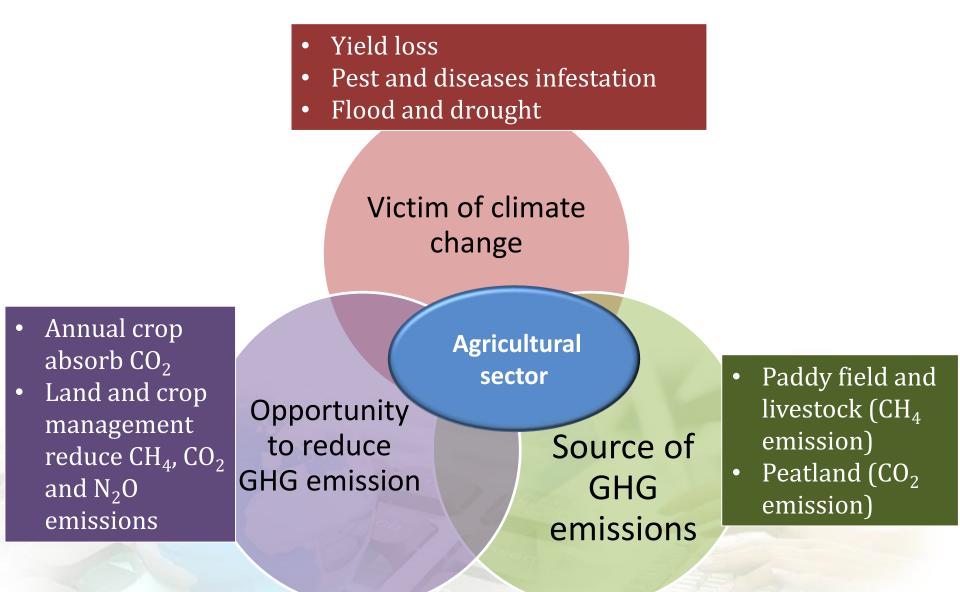
SCIENCE.INNOVATION.NETWORKS

Adaptation and mitigation on Rice in Indonesia

3

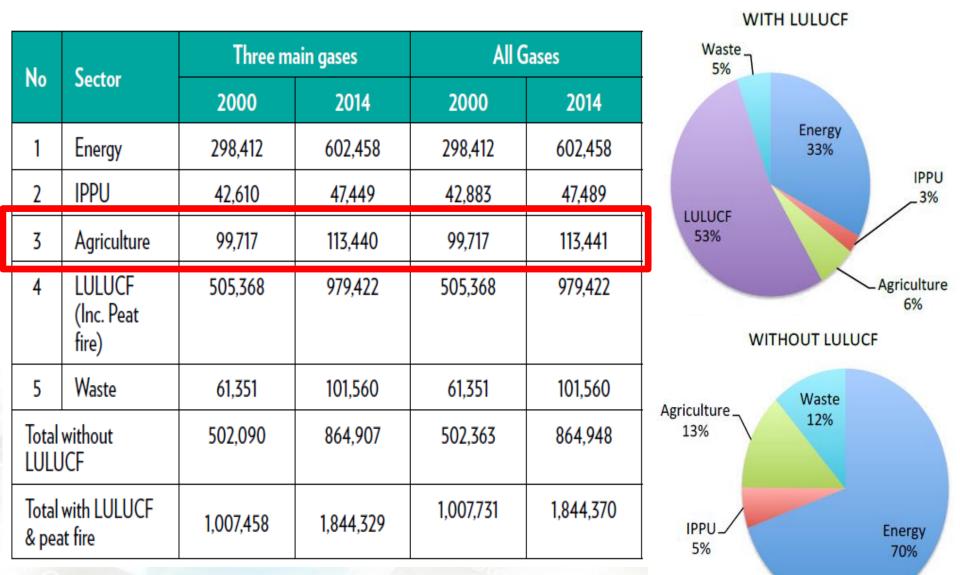
Ministry of Agriculture Indonesian Agency for Agricultural Research and Development - IAARD SCIENCE.INNOVATION.NETWORK

Indonesia's commitment



- GHG emission reduction targets by **2030** are targeted at 29% (unconditional) and 38% (conditional)
- Indonesia, as an
 archipelagic country (<u>+</u>
 17,000 island), is
 identified as one of the
 vulnerable countries →
 responding to the
 challenge of climate
 change is a part of priority
 policies for Indonesia

Ministry of Agriculture Indonesian Agency for Agricultural Research and Development - IAARD SCIENCE.INNOVATION.NETWORKS www.litbang.pertanian.go.id



Ministry of Agriculture Indonesian Agency for Agricultural Research and Development - IAARD SCIENCE.INNOVATION.NETWORKS

National GHG Emissions in year 2000 and 2014 (Gg CO2e)

Source: MoE, 2017

Ministry of Agriculture

Indonesian Agency for Agricultural Research and Development - IAARD

SCIENCE.INNOVATION.NETWORKS

achievement of target (in percentage)

		duction Target 2020 ¹	Emission Reduction Target by 2030 ²		
Sector	26% (Uncondi- tional)	41% (Condi- tional)	29% (Uncondi- tional)	38% (Condition- al)	
Forestry and peatland	87.62	87.38	59.31	60.15	
Waste	6.26	6.56	1.31	2.61	
Energy and Transportation	4.95	4.71	37.93	36.61	
Agriculture	1.04	0.93	1.10	0.34	
Industry	0.13	0.42	0.34	0.29	
Total	100.00	100.00	100.00	100.00	

Source: Presidential Regulation No.61/2011, ²MoEF (2016)

Ministry of Agriculture

Indonesian Agency for Agricultural Research and Development - IAARD

SCIENCE.INNOVATION.NETWORKS

Adaptation actions in agricultural sector based on various studies

Sector	Adaptation Options	Source	
Agriculture	Irrigation technology	7	Sumaryanto (2012); Surmaini et al.
	Improve farmer activities	3	(2010); Lamid (2011); Foerster et al.,
	Use of superior varieties	3	(2011); Sakya & Mahardhika (2010); IFC
	Climate Insurance	2	(2009); Kartikasari et al. (2015); Ruminta
	Develop varieties tolerant	2	& Handoko (2012); Syaukat (2011);
	Increasing crop productivity	2	Lassa, Mau, Li, & Frans (2014); Muslim
	Adjustment of plant season	2	(2013); Supriadi & Heryana (2011);
	Land expasion	2	Maulidah, Santoso, Subagyo, & Rifqiyyal
	Food diversification	1	(2012); Muslim (2013). Surmaini et al.
	Global partnership	1	(2010); Rachmiati et al. (2014)
	Reducing food consumption	1	
	Modification of planting media	1	
	Crop replanting		How to improve or
	Simulation technology		maintain productivity
	Forecast harvest time		• • •
	Transpotation access	1	to face CC
	Climate field school	1	

Source: MoE, 2017

Ministry of Agriculture

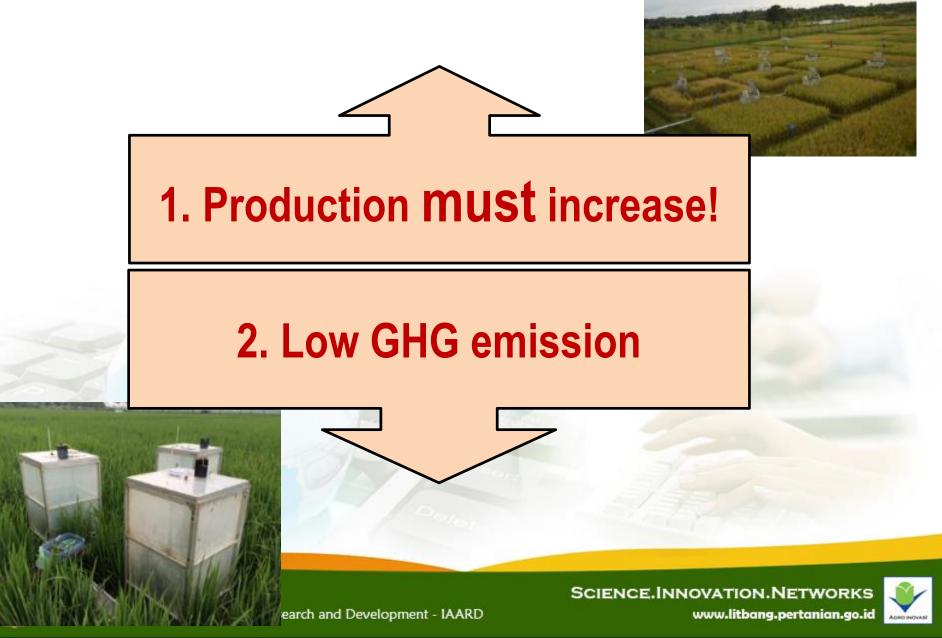
Indonesian Agency for Agricultural Research and Development - IAARD

SCIENCE.INNOVATION.NETWORKS

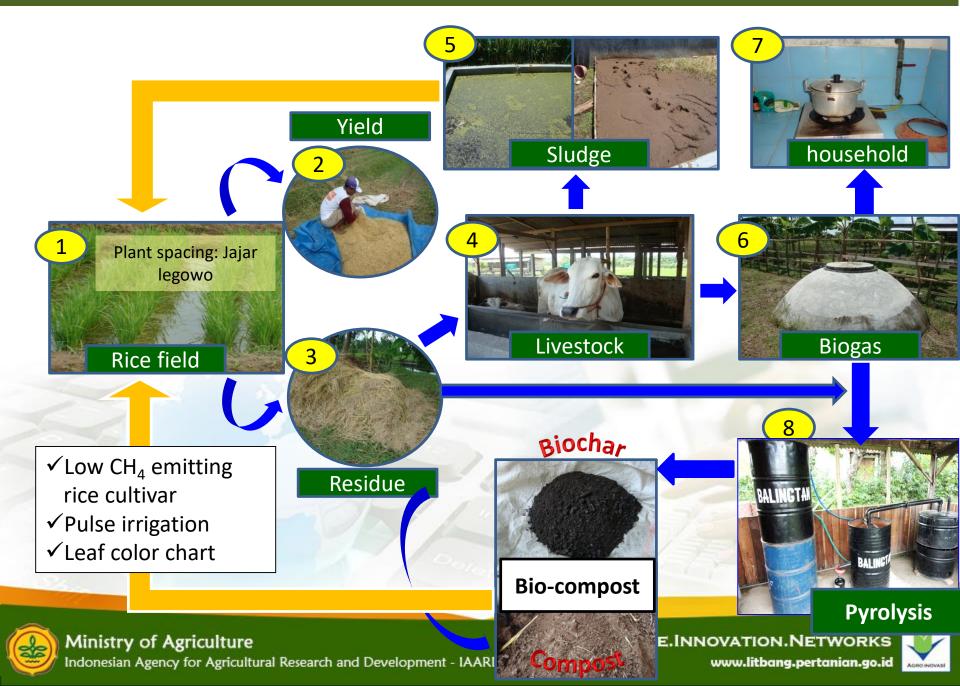
Ministry of Agriculture SCIE Indonesian Agency for Agricultural Research and Development - IAARD

SCIENCE.INNOVATION.NETWORKS

Technologies for Climate Change Adaptation and Mitigation in Rice


	Drought tolerant Rice Varieties	Flood tolerant Rice Varieties	Salinity Tolerant Rice Varieties
	Inpari 18, Inpari 19, Inpari 20, Inpago 4,	Inpari 29, Inpari 30 Ciherang Sub-1, Inpara 4, Inpara 5	Inpari 34 Inpari 35
	Inpago 5, Inpago 6, Inpago 8, Inpago Lipigo 4		elongation Wilt
3	Ministry of Agriculture		Flash flood 2 weeks

Indonesian Agency for Agricultural Research and Development - IAARD


www.litbang.pertanian.go.id

AGRO INOVASI

GHG mitigation from agricultural sector

Integrated crop-livestock system

integrated crop-livestock

Water managements	Rice varieties	Yield (t/ha)	GHG emissions (t CO ₂ -e/ha)	Emission Index (t CO ₂ -e/t yield)
	Ciherang	3,26	4,56	1,40
CF	Inpari 30	3,18	5,04	1,58
	IPB3S	3,20	4,18	1,31
	Ciherang	3,11	2,90	0,93
Intermittent irrigation	Inpari 30	3,21	2,58	0,80
ingation	IPB3S	2,95	3,26	1,11

Intermittent irrigation reduced CH₄ emission around 30-47%

Sludge production was around 2 kg/day or 730 kg/year → additional income

Cow dung were kept in bio-digester

The profit from cattle and manure management:

- 1. Weight gain of the cattle
- 2. Biogas could reduce CH_4 emission around 1231 ton $CO_2e/year$
- 3. CH₄ capture that converted into LPG was around Rp 4.399.200,- (315 USD)

TWORKS

Global Warming Potential from intensive rice farming system

	GWP (t CO ₂ -eq/ha)			a)	Total of GWP	NC . L I	Index of
Treatments	PS I	PS II	PS III	PS IV	(t CO ₂ - eq/ha/year)	Yield (t/ha/year)	yield/ GWP
Conventional	8.3	7.9	10.6	11.5	38.4	18.8	0.49
Conventional- intermittent	4.7	5.6	7.8	7.3	25.8	20.7	0.80
ICM-continuous flooded	5.4	7.6	10.5	10.8	34.4	20.4	0.59
ICM-intermittent	3.4	4.3	8.0	6.6	22.4	20.8	0.93
SRI-intermittent	3.4	6.5	7.3	3.3	20.4	12.1	0.59
Semi SRI- intermitternt	5.2	5.9	9.0	7.7	28.9	16.9	0.58

Ministry of Agriculture Indonesian Agency for Agricultural Research and Development - IAARD SCIENCE.INNOVATION.NETWORKS

Conclusion

 Adaptation co-benefit in paddy rice is needed to explore more in respond to handle high demand of rice and tackle climate change

Ministry of Agriculture Indonesian Agency for Agricultural Research and Development - IAARD

SCIENCE.INNOVATION.NETWORKS

Thank you, Terimakasih

Ministry of Agriculture

Indonesian Agency for Agricultural Research and Development - IAARD

SCIENCE.INNOVATION.NETWORKS

