

agri benchmark can bring farm-level economics and sustainability analysis to GRA

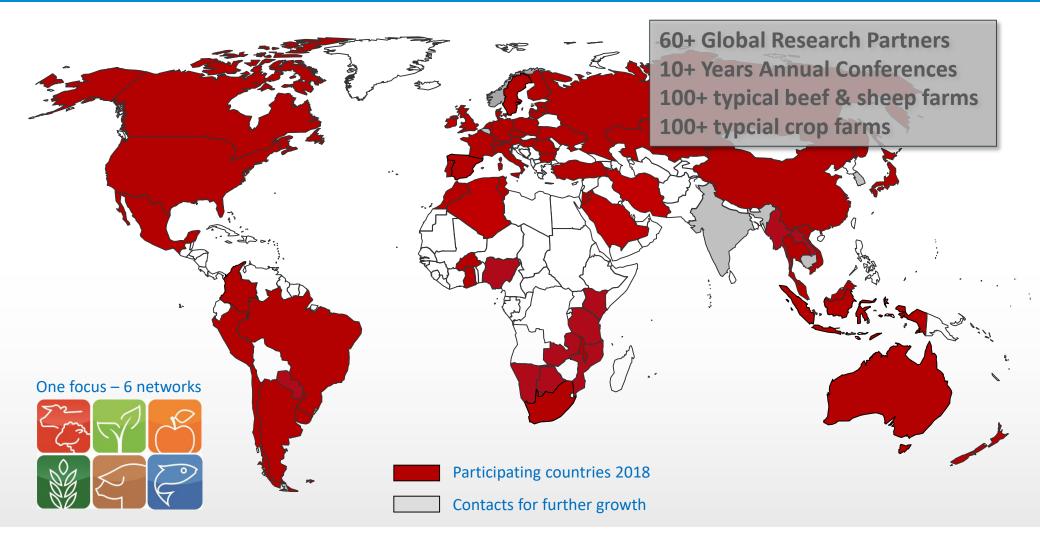
Julián Chará, Ernesto Reyes, Claus Deblitz, Yelto Zimmer *agri benchmark* Network

Agenda

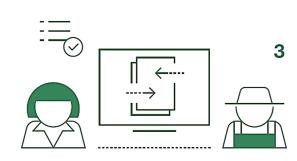
- (1) Efficient and effective GHG mitigation strategies in agriculture
- (2) What agri benchmark has to offer
- (3) Highlights from our research
- (4) Future research

Our approach

- (1) Agricultural is extremely fragmented GHG mitigation strategies that require intense and close monitoring will fail.
- (2) Therefore strategies have to create a win-win.
- (3) Productivity growth is <u>the</u> multiple win-win: Less GHG per unit, higher income, more food, less pressure for LUC.
- (4) Globally, more productive systems are established. No rocket science is needed.
- (5) What you need: in-depth understanding of current systems and obstacles for improvements and how to overcome them.


agri benchmark – understanding agriculture worldwide

We harvest data around the world.


agri benchmark typical farm approach

Data collection
LOCAL SCIENTISTS, ADVISERS, FARMERS

Processing and cross-checking LOCAL SCIENTISTS

Validate and publish results to partners and clients

LOCAL SCIENTISTS, SCIENTISTS AT AGRI BENCHMARK CENTER

Outputs:

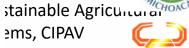
- Thorough understanding of the economics of the major proportion of crop and livestock production
- Access to growers and advisors

Major clients and research partners

Cooperation with other network activities

Case study approach to analyse silvo-pastoral systems

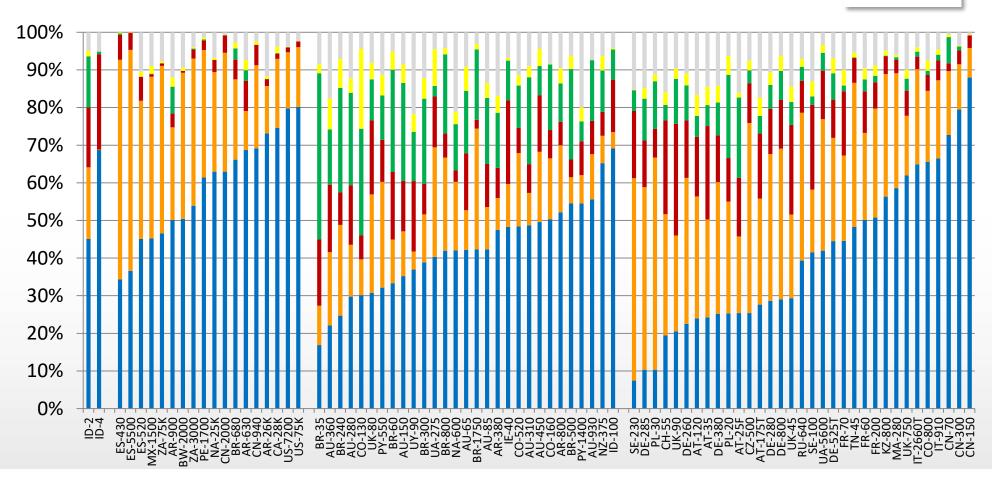
Institutions that ibipating do plois side the case studies



Centre for Res Pro

Areas analysed and steps

- ▶ Baseline (status quo) and scenarios of silvopastoral systems
- Close cooperation with producers and local experts
- Analysis of the following areas and elements:
 - Performance and productivity
 - Economics
 - Environment (GHG-emissions, nutrients, soils, water, energy)
 - Animal welfare
 - Social impacts
- Calculation and aggregation of all elements in one tool


Cost composition by production system

OtherCapitalLand

Labour

Feed

Animals

Results silvopastoral systems

Case 1 – BEEF FINISHING

COLOMBIA

Region: Cesar

Climate condition: Dry tropical

Baseline vs. SPS
From degraded soils to intensive sustainable production

SPS strategy implemented

Intensive SPS

Leucaena + Panicum + Eucalyptus

Sustainability issue to illustrate

Restoring degraded natural resources

Emphasis on SDG

FORAGE PRODUCTION

Ton. dry matter/ha

compared to baseline

LAND PRODUCTIVITY

Kg. meat/ha

450% compared to baseline

ANIMAL WELFARE

Feeding Housing Health Behaviour

compared to baseline

Total area: 200 ha.

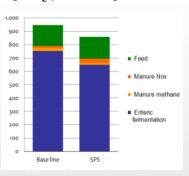
% Area under SPS

reached: 8th year

ECONOMIC RESULTS

Initial investment

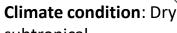
USD/Ha. 1,850



Profit (USD/year)

ENVIRONMENTAL IMPACT

Kg CO₂ per 100 kg LW added



Results silvopastoral systems

Case 7 - DAIRY

MEXICO

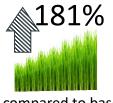
Region: Michoacán

subtropical **Baseline vs. SPS**

From intensive production system with high dependence on external inputs to intensive sustainable production

SPS strategy implemented

Intensive SPS - Leucaena + Guinea


Sustainability issue to illustrate

Scaling up Intensive sustainable production

Emphasis on SDG

FORAGE PRODUCTION

Ton. dry matter/ha

compared to baseline

Total area: 50 ha.

% Area under SPS

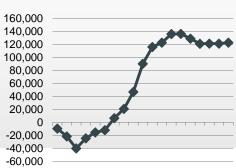
reached: 5th year

ECONOMIC RESULTS

LAND PRODUCTIVITY

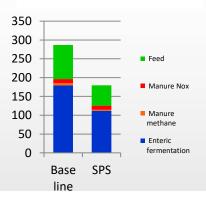
Tons ECMilk/ha

290% 🖠


compared to baseline

Initial investment

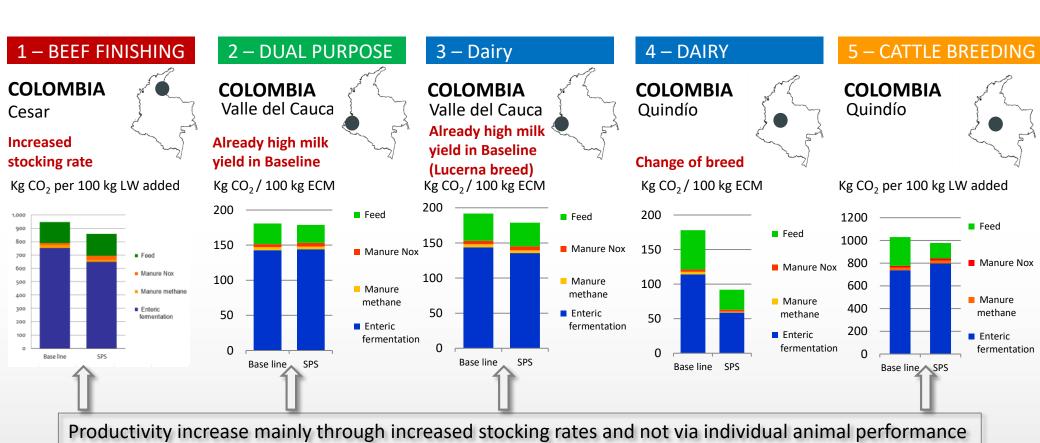
USD/Ha.


1,274

Profit (USD/year)

ENVIRONMENTAL IMPACT

 $Kg CO_2 / 100 kg ECM$



gri benchmark

Case study results GHG emissons I

→ Less reduction of GHG emissions on a per kg output basis but less land needed for same production

Case study results GHG emissons II

6 – DUAL PURPOSE

COLOMBIA Caquetá

Very low milk yield in Baseline

Kg CO₂ / 100 kg ECM 1500 Feed 1000 Manure Nox Manure 500 methane Enteric fermentation Base line SPS

7 – DAIRY

Kg CO₂ / 100 kg ECM

Base line SPS

agri benchmark and GRA

350

300

250

200

150

100

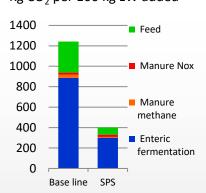
50

Feed

Manure Nox

Manure

Enteric


methane

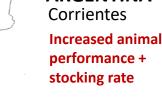
fermentation

8 – BEEF FINISHING

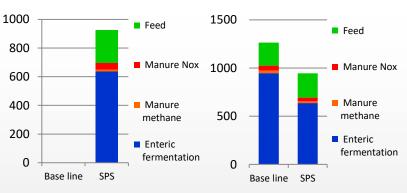
MEXICO Michoacán

Kg CO₂ per 100 kg LW added

9 – FORESTRY & FIN

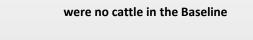

Kg CO₂ per 100 kg LW added

ARGENTINA Misiones



10 – BEEF FINISHING

ARGENTINA Corrientes performance + stocking rate



Kg CO₂ per 100 kg LW added

agri benchmark

No Baseline figures because there were no cattle in the Baseline

Main conclusions

- The case studies provide sound evidence that SPS simultaneously deliver gains in productivity and profitability, environmental improvements, and animal welfare benefits and thereby support a number of SDGs
- The same quantity of product can be produced on less land which can be released to native vegetation / carbon sinks. To avoid undesired rebound-effects, good governance, policies and incentives are required
- Public-private alliances, driven by strong farmer's organizations, have proven crucial in overcoming technical barriers
- National policies should support SPS adoption with specialized training for extension workers and technicians, dedicated credit lines and payment for environmental services and other incentives

Approach of agri benchmark

- Production systems approach
 >>> more than financial data; reasons behind differences of economic results
- Partnership approach through networking
 >>> access local expertise and overcome language issues
- Cooperation with producers and advisors
 >>> get the story behind the data
- Global coverage
 >>> big players and emerging economies
- Using standardised methods world-wide
 >>> global comparability
- Works in countries without / with limited statistics and accounting
 >>> generate data that nobody else has

Recent publications

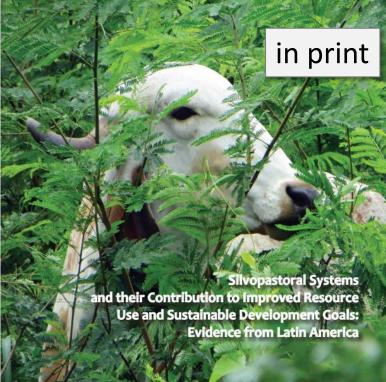
Briefing paper 17/2

Measuring sustainability on cattle ranches Silvopastoral systems

Ernesto Reyes¹, Alfredo Bellagamba¹, Juan José Molina², Lola Izquierdo¹, Claus Deblitz¹, Julian Chará², Lesley Mitchell³, Basia Romanowicz⁴, Manuel Gómez⁵, Enrique Murgueitio²

- agri benchmark Beef and Sheep Network Thünen Institute of Farm Economics, Braunschweig, Germany.
- Centre for Research on Sustainable Agricultural Production Systems, CIPAV, Call, Colombia.
- ³ Good Food Futures Ltd, Poling, UK
- *World Animal Protection, London, UK
- ⁵ Colombian Cattle Ranching Farmers Association, Bogotá, Colombia

Colombia case studies


Colombia,
Mexico,
Argentina
case studies

Global Agenda for Sustainable Livestock

agri benchmark – passionate about facts

Dr. Claus Deblitz

Thünen Institute of Farm Economics Bundesallee 63 38116 Braunschweig, Germany Tel.:

+49-531-596-5141

Fax:

+49-531-596-5199

E-mail:

claus.deblitz@thuenen.de

Internet:

www.agribenchmark.org

www.thuenen.de/en/bw

