GLOBAL RESEARCH ALLIANCE

ON AGRICULTURAL GREENHOUSE GASES

Country report : New Zealand

Current NZ research to support inventory improvement

- Understanding cattle CH₄ yields at very low and very high levels of feed intake (< 6kg and > 14kg), improving accuracy of estimates on young animals and high producing animals respectively.
- Review and improvement of the animal weight gain calculation model, to improve transparency and robustness of liveweight estimates.

 Meta-analysis for emission factors from N₂O emissions from livestock on hill country for variable gradient slopes.

Current NZ research to support inventory improvement

- Successful inclusion to inventory: Review of N partitioning relationship for ruminants has resulted in updated methodology and represents improved accuracy in the national inventory.
- Improving estimates of supplemental feed use for Dairy, Beef and Sheep industries.
- Gathering further pasture quality samples to input into framework developed last year of existing national pasture quality data.
- Improving understanding of the causes of variability and the processes driving N₂O emissions from livestock excreta on pasture.

Current C stocks and sequestration potential

Sampling design for soil carbon research

- Data for inventory/research has generally come from historical surveys:
 - Biased towards areas of intensive agricultural activity
 - Subjective sampling design, rather than random
 - Less representative of whole of New Zealand environment
 - Low- or under-powered studies in some cases
- End users are now asking more complex questions:
 - How are soil properties changing over space & time?
 - Can we be sure the conclusions using this data are reliable?
 - What is the chain of evidence for this analysis?
- Increased use of spatial sampling power analysis:
 - Generally, simulation methods must be used
 - · More effort required to document and quantify justifiable assumptions
- Challenge is to communicate results to end users in clear non-technical language

Recent examples of sampling design

- Is hill-country grassland soil carbon increasing over time?
 - Power analysis based on a published pilot study
 - Balanced spatial sampling for representativeness
 - Sampling set selection based on minimum visit distance
- Design framework for lowland grassland soil carbon monitoring
 - Power analysis using simulation, based on:
 - Published historical data
 - Expert knowledge concerning justifiable assumptions
 - Have already shown that sample effort strongly dependent
 on chosen assumptions

Ongoing... farm scale assessment approach

Mitigation practices: Looking for gains and avoiding losses

Supported by mechanistic process studies

	Losses/lost	Maintain		Gains/gained
Tested or under testing	Irrigation Pasture renewal process Maize Conversion from pasture to forest	Phosphorus	Diverse swards Inversion tillage	 ★ Biochar ★ Conversion from forest to pasture
Known unknowns	Nitrogen fertiliser, fodder cropping, plantain, cut and carry, tussock management, grazing regimes			

Synthetic reviews:

The current position: *Schipper et al. (2017) NZ J Ag. Res. 60(2): 93–118.* The opportunities: *Whitehead et al (2018) Ag. Ecosystems Environ. 265:432-443.*

Note: not a full carbon balance

Connecting measurement, modelling, and production trade-offs

Kirschbaum et al (2017). Science of the Total Environment 577: 61-72.

Soil carbon Programme – NZAGRC Review 2018

Specific contributions to other Groups related to IRG activities

• Developed agricultural MRV platform www.agmrv.org with CCAFS

• Produced collection of Tier 2 Inventory approaches in the livestock sector

A collection of agricultural greenhouse gas inventory practices

November 2018

ON AGRICULTURAL GREENHOUSE GASES

Comparing trade-offs soil carbon and nitrous oxide

We need to ensure that any mitigation practice successful for one gas does not cause does not emissions of another.

Liang et al 2018 *Agriculture Ecosystems and Environment*. 268:171-180.

