| Title | A decision tool for predicting N ₂ O emissions and targeting mitigation (N ₂ O Switch) | |------------------------------|---| | Project
Timeframe | Jul 2017 – Sep 2020 | | Countries
Involved | New Zealand (Lincoln University) | | | Germany (Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research Atmospheric Environmental Research) | | Aim | To generate soil redox, soil oxygen concentrations, and N ₂ O production pathway data that will demonstrate the potential for using relative soil diffusivity (Dp/Do) as a tool for predicting soil environmental conditional that favour specific N ₂ O emission pathways. | | Research
Highlights | Reliable and accurate site preference values for N₂O are more
exacting to establish than previously considered, confirming that
the soil diffusivity (Dp/Do) values explain well the dynamics in
N₂O site preference. | | | Karlsruhe Institute of Technology (KIT) performed an advanced
experiment, correcting for interferences and low N₂O
concentrations, examining nitrification inhibition effects. | | | Found that N₂O produced during nitrification was negligible
compared to that produced during denitrification. | | | Enhanced collaboration on grassland nitrogen cycling saw
collaboration on a manuscript and attempts made to explore
existing data from new angles. | | | Collaboration with KIT and the Institute of Meteorology and
Climate Research Atmospheric Environmental Research in
Germany. | | Future
Work | Sophisticated instrumental set ups are required to measure site preference, in order to better understand the mechanisms generating N ₂ O evolving from grazed pasture systems. | | Key
Research
Output(s) | Journal article(s) | | | Clough, T.J., Cardenas, L.M., Friedl, J., Wolf, B. (2020) Nitrous oxide emissions from ruminant urine: science and mitigation for intensively managed perennial pastures. <i>Current Opinion in Environmental Sustainability</i> , 47:21-27. |