

Ag MIP The Agricultural Model Intercomparison and Improvement Project

Mitigation and Adaptation Co-Benefits in Agriculture ~ MAC-B ~

Cynthia Rosenzweig IRG Annual Meeting 2021 June 25, 2021

To promote climate change action and the SDGs, there is growing attention by policy-makers, stakeholders, and researchers on interventions* that contribute to both mitigation and adaptation co-benefits, trade-offs, and synergies

*e.g., soil carbon sequestration, sustainable intensification, crop-livestock systems

MAC-B Assessment Framework

GLOBAL RESEARCH ALLIANCE

ON AGRICULTURAL

MAC-B project aims to increase in-country capacity to co-develop information products of value to stakeholders

This involves continuing training and experiences using 'best practices' in both modeling and stakeholder engagement

Bangladesh MAC-B Seed Project Objectives

- Directly integrate stakeholder feedback into MAC-B assessment process and co-develop feasible interventions (focused on sustainable rice management and intensification) for mitigation and adaptation co-benefits.
- Evaluate effects of interventions in current farming systems using measures of mitigation, adaptation and development benefits, including greenhouse gas emissions, resilience to climate variability, farmer livelihoods, gender, and nutrition.
- Evaluate effects of interventions on measures of benefits under future climate scenarios.
- **Support policy development** by convening policy-makers round table to communicate findings and discuss policy implications for mitigation and adaptation programs and NDCs.
- Strengthen capacity in all partners in using and applying GRA/AgMIP MAC-B methods

Models and Output Variables

• GHG emissions

- Model: DNDC
- N₂O, CO₂, and CH₄ flux rate (kg C/ha, kg N/ha)

• Yields

- Models: ORYZA, APSIM
- Yield per hectare (kg/ha)

• Stability of yields

- Models: ORYZA, APSIM
- Coefficient of variation of crop model outputs

• Economic performance

- Model:TOA-MD model
- Sensitivity to costs for aspects of production that contribute strongly to GHGs, such as N management and water management

• Farmer income and percent poverty

- Model: TOA-MD
- o By strata

Data Sources

Data Type	Source 1	Source 2
Climate information	Bangladesh Meterological Department	AgMERRA, AgMIP archives
Economic data	Primary surveys and data maintained by CIMMYT	Bangladesh Bureau of Statistics (BBS) data
Crop practice data	Primary surveys and data maintained by CIMMYT	Bangladesh Rice Research Institute

The Agricultural Model Intercomparison and Improvement Project

Mitigation/Adaptation Rice Modules/Linkages

DNDC-Art/Applied GeoSolutions coupled rice-soil process-based model that analyzes biophysical processes of rice systems for mitigation and adaptation

Mitigation/Adaptation Rice Model Flowchart

Potential Next Step: Multi-country MAC-B Program

- Expand MAC-B projects to additional GRA countries
- Create set of protocols that can be used and modified by each country
- National stakeholder/policy-maker engagement
- Engage with other GRA research groups

Some Scoping Discussions

Bangladesh

Conduct seed project on sustainable rice intenstification management options to test mitigation and adaptation co-benefits.

Dominican Republic

Assess co-benefits, trade-offs and synergies for adaptation/mitigation in **current NDCs** for Caribbean Central America using representative farming systems to **identify gaps and needs**.

Peru

Perform *ex-ante* impact assessment analysis of potential adoption rates of **Alternate Wetting/Drying** to evaluate sustainable rice intensification in coastal and Amazon regions.

Vietnam

Conduct a **sustainable rice intensification regional integrated assessment** in the Red River Delta and Mekong River Delta rice-growing regions.

Zimbabwe

Characterize trade-offs in **mixed crop-livestock systems** and co-design mitigation and adaptation options for mixed crop-livestock systems under future challenges.

Papers Invited for Special Issue

BMC Part of Springer Nature

Search

Co-Benefits and Tradeoffs to Food Security from Mitigation and Adaptation in Agriculture

This thematic series will publish in **<u>CABI Agriculture and Bioscience</u>**.

Guest Edited by: Sonali McDermid¹, Roberto Valdivia², Cynthia Rosenzweig³ & Erik Mencos Contreras⁴

¹ New York University; ² Oregon State University; ³ Goddard Institute for Space Studies, NASA & ⁴ Columbia University, USA

Submission Deadline: 31 October 2021

Aims and scope: Research at the *nexus* of climate mitigation and climate adaptation in agriculture remains challenging, owing to both data and modeling limitations, as well as the

For protocols, up-to-date events and news, and to join AgMIP mailing list, visit <u>www.agmip.org</u>