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Executive summary 
The inclusion of feed additives in livestock diets or supplements is a routine 

global nutritional management practice. Consequently, the existing commercial 

feed additive marketing and delivery pathways will be able to deliver rapid 

market penetration of feed additives specifically developed to reduce enteric 

methane emissions. So, the delivery path is clear, but are the methane 

mitigating additives available, effective, and are there any constraints or risks 

associated with their use? To answer these questions an assessment of the ten 

leading classes of compounds being studied for methane mitigation efficacy in 

ruminants was made. The assessment is provided as a concise resource that can 

serve as an evidence base to guide investment and management decisions by all 

actors in the livestock additive supply chain. 

Key findings of the review of these 10 additive groups include: 

• Only two of the additives (3-Nitrooxypropanol) and dried Asparagopsis 

(red algae) have routinely delivered over 20% mitigation of enteric 

methane by the consuming ruminants. 

• The level of confidence in efficacy is greater for 3-Nitrooxypropanol than 

for Asparagopsis because of a greater number of refereed publications 

demonstrating this efficacy. 

• Dietary nitrate is the third most effective additive and can safely deliver 

10% or more mitigation when consumed. 

• The other classes of additive cannot be expected to deliver 10% 

mitigation when fed. 

• There are two major constraints to any of the ten additives achieving 

substantial global impact on livestock emissions in the immediate future, 

being: 

o Insufficient evidence exists to be confident that any of these feed 

additives will deliver a co-benefit of increased production (growth or 

milk) from the animal in association with decreasing methane 

output.  

o Almost all studies have relied on additives mixed into a total mixed 

ration; that is, in a diet which provides the additive in every 

mouthful. There is almost no evidence of how much mitigation will 

be achieved if the additive is provided in a supplement that the 

animal may only consume once daily or once every few days, as in 

rangeland systems. 

 

• To establish a business case for on-farm use of these additives, there is 

an absolute requirement for further research to: 

o Conduct highly replicated studies of animal production responses to 

inclusion of the leading additives. These need to have sufficient 

statistical power to detect differences of 5% or less, in keeping with 

the differences sporadically observed in smaller studies. 

o Quantify the mitigation achieved and optimise delivery strategies 

when additives are supplied in supplements provided separate from 
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the basal feed. This will require assessment at a range of 

supplementation frequencies pertinent to major feeding systems. 

 

• Without co-benefit and pulse dose efficacy data there is no way of 

establishing the commercial argument for additive use or identifying the 

market sectors in which they may be applicable. 

• The assessment identifies that the global livestock industries have a very 

limited suite of emerging feed additives suitable for enteric methane 

suppression. Therefore, it would be appropriate that basic research be 

expanded to extend the range of additives under development. 

• A small survey of the actors in the feed additive pipeline from the 

manufacturers through feed millers to livestock managers, showed: 

o A poor understanding of the efficacy and co-benefits of potential 

additives. 

o A recognition by all livestock managers that they required more 

information on these additives. 

o Not one additive manufacturer identified the grazing industry as an 

extremely high priority market for a methane mitigating product. 

o When matched with the scientific concern about additives not being 

optimised for pulsed intake as supplements, the grazing livestock in 

the developing world may not achieve significant mitigation through 

feed additives in the near future. 
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Feedlot cattle receiving additives in total mixed rations (TMR). (Credit: Nicky Oelbrandt) 

 
Rangeland supplement delivery of additives in northern Australia (Credit: Roger Heagarty) 
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Project synthesis 

Project objectives 
As the livestock sector seeks to achieve carbon neutrality by 2050 to meet the 

goals of the Paris Agreement, the research and commercial communities have 

accelerated efforts to identify greenhouse gas emission mitigation opportunities. 

With increasing attention on feed additives and the accompanying proliferation 

of products claiming to reduce emissions, a thorough evaluation of the evidence 

for feed additives intended to reduce emissions can help guide further action.  

The objective of this report is to provide evidence to policy makers, industry 

investors and feed industry advisers about the effectiveness, applicability, and 

broader commercial issues regarding feed additives used for the purpose of 

reducing methane emissions. By scoping the full breadth from technical 

effectiveness to industry applicability and research needs, the report goes 

beyond what is normally presented in scientific reviews. We present this 

information as a concise resource that can serve as a basis to guide investment 

and management decisions by all actors in the livestock supply chain. 

Key information is provided as a reference library, consisting of a four-page 

summary of each additive’s attributes with links to the source information.  

Methods and scope 
This synthesis and reference library were developed assessing the 10 leading 

categories of methane-suppressing feed additives based on chemical grouping. 

Their mode of action, efficacy, and stage of development were individually 

summarized. The assessment excluded feed ingredients that would constitute 

more than 5% of the diet, such as dietary lipids. Commercial names of products 

were identified but the assessments are made by chemical-group, rather than by 

commercial product. The assessments of efficacy are principally derived from 

published peer-reviewed meta-analyses for most of the additives considered. 

It should be noted that the report is for additives that are available and well 

researched at this time. There is a range of additional early-stage research 

products which are not yet well researched. It is also possible that new additives 

in some categories, that have shown poor performance to date, may be further 

developed (e.g., more active direct fed microbials or biochars) for higher 

efficacy. 

To augment this evaluation, questionnaires were developed to assess interest, 

activity, and time to commercialization of methane mitigating additives for 

livestock producers, feed or supplement manufacturers and producers of feed 

additives.  
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Evaluation of climate change mitigation efficacy 
A graded and color-coded estimate of efficacy in mitigation was developed, 

based on the percentage reduction in methane emission resulting from the 

average dose used in animal studies in meta-analyses and/or reviews (Figure 1). 

Confidence in that efficacy was ranked (1-5), based on the robustness of data, 

being the number of peer-reviewed animal-based publications, and the 

subjectively assessed level of agreement on efficacy within that data (Figure 1). 

 
Figure 1. Key to Table 1 for estimating and describing efficacy and confidence in 

the estimate for each methane mitigating additive. 

The key attributes of the ten additives most researched for methane mitigation 

are summarized in Table 1 below. In summary, among the additives examined, 

the evidence is most robust for the synthetic product 3-Nitrooxypropanol (3-

NOP, which provided substantial efficacy in total mixed rations, with no apparent 

health, or product safety risk. The natural product Asparagopsis has shown 

higher efficacy but with less supporting data, and residual levels of bromine and 

iodine in animal production need further study. Nitrate can achieve over 20% 

mitigation, but risks of animal toxicity need to be managed, so Cargill 

recommends inclusion levels that would only provide 10% mitigation. Beyond 

these three additives, there are no other additives assessed for which there is 

robust evidence of even a 10% mitigation. Absolutely no additive exhibits robust 

evidence of co-benefit impacts on productivity of more than 10%. 
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Table 1. Summary of mitigation efficacy, applicability, co-benefits, and constraints of feed additives. Numerical and colour codes for 

efficacy parameters are explained in Figure 1. 
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Implications for feed additives’ role in global climate change 
With 44% of anthropogenic methane emissions arising from livestock systems1, 

managing feed to minimize enteric methane emissions is an important strategy 

to controlling global climate change. Aside from changing the quantity of feed 

supplied, the nutritional value of the forage (in grazing systems) or the quality of 

the ration in Total Mixed Ration (TMR) feeding systems can also be changed. 

Additives can readily be applied in the TMRs, but feedlots contribute only 2.1% 

of global livestock enteric emissions (Figure 2). Almost all published research on 

additives has been carried out under conditions of providing the additive in a 

TMR ration, that is, the additive is in every mouthful the animal eats. 

Consequently, most of the existing research on mitigation additives is only 

directly applicable to the small global emission from the feedlot sector.  

Figure 2. Proportions of 

enteric methane emission 

from grassland, mixed or 

feedlot animal systems; data 

is from 2010. FAO. 2017. 

Global Livestock 

Environmental Assessment 

Model (GLEAM) [online]. 

Rome. [Cited 18 May 2017]. 

www.fao.org/gleam/en/ 

There is scope for including additives in mixed feeding systems (60.5% of 

emissions) where supplements or partial mixed rations are fed. But even here 

there is an extreme lack of data to answer the pivotal following question. “Will 

the results observed from placing additives in TMR feeds be replicated when the 

additive is not in every mouthful, but rather is provided in a ‘pulse dose’, either 

in a supplement while grazing or in a partial ration? For example, when animals 

are fed at milking or in cut and carry forage systems.” 

In these systems the additive may (1) have to be provided at a higher inclusion 

rate than if mixed in the entire diet, which could affect efficacy and feed intake. 

Conversely, or (2) be expected to only work for a short period due to rumen 

dilution or destruction of the additive. 

This issue of short-term efficacy is easily visualized in the time-course of 

emissions from dairy cattle provided 3-NOP twice daily in a pre-feed supplement 

(Figure 3). The difference in methane emission rate lasted for less than 6h after 

the additive was provided. 

https://apc01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.fao.org%2Fgleam%2Fen%2F&data=04%7C01%7CRoger.Hegarty%40nzagrc.org.nz%7Cf79501f0037c4cf3eaa808d9a8b996b9%7C0dce4a686d804298847ac04815157957%7C0%7C0%7C637726337367625735%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=mPlekUrtatNQUW%2FGvK4TUKgAL3Z14hLQ4%2F7ECmJBC5k%3D&reserved=0
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Figure 3. Moment by moment enteric CH4 emission rates over 2 days in dairy 

cattle offered 3-Nitrooxypropanol (3-NOP) in supplements provided twice daily 

(arrows indicate supplement time). Graphs show the mitigation effect persists 

for less than 6 h post supplement2. 

Consequently, to achieve global enteric methane mitigation, there is an 

outstanding need for development of methane inhibitor delivery systems that 

are robust in achieving mitigation in pasture-based systems. Some efforts have 

already been made to prolong rumen mitigation (e.g., with 3-NOP2 and 

cyclodextrin protected haloforms3). Preserving stability of volatile additives 

within the feed has also been studied4. However, current evidence for effective 

delivery of methane-suppressing feed additives is insufficient to enable their use 

in substantive mitigation in grazing and mixed farming sectors in any country. 

There has been a strong expectation by commercial developers that the energy 

saved by suppressing enteric (gut) methane production would be captured in 

improved productivity of ruminants. As the subsequent review indicates, this 

does not reliably occur for most methane inhibiting additives. None of the 

currently available additives can consistently offer a “productivity gain” to justify 

feeding the additive across all ruminant production systems. Other motivations 

as listed below may be needed to raise use of methane suppressing additives. 

• Corporate environmental reputation 
• Income from carbon credits 

• Government subsidies to change nutritional management 
• Corporate premiums for low carbon products 

• Market access for low carbon products 
• Government subsidies for low carbon products 
• Legislative requirements 

Supplementation of grazing animals is an early step to agricultural intensification 

and is viewed as an industry advance in rangeland environments and the 
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developing world. Sustainable intensification of food production is seen as the 

way to secure humanity’s future5, although it remains aspirational in some 

regions. Even assuming adequate availability and efficacy of methane-mitigating 

feed additives, a critical weakness remains in that almost nothing is known of 

the efficacy of leading products, such as 3-nitrooxypropanol and Asparagopsis, 

when consumed intermittently by free-ranging ruminants. 

How prepared is the global livestock industry? 
In addition to identifying the above ‘gaps in the science’ by review of literature, 

a survey-based assessment of awareness and understanding in the feed additive 

pipeline (additive manufacturers, feed or supplement manufacturers, and 

livestock managers) was undertaken. This provided a range of broad insights 

that are important if feed additive use is to lead to major reductions in global 

enteric emissions from livestock. 

Regarding additive manufacturers this industry assessment found: 

• Additive manufacturers are largely targeting livestock in the developed 

rather than developing world. 

• Not one additive manufacturer identified the grazing industry as an 

extremely high priority market for a methane mitigating product. 

• When matched with the scientific concern about additives not being 

optimised for pulsed intake as supplements, this suggests the developing 

world will not achieve significant mitigation through feed additives in the 

near future. 

The feed and supplement manufacturing industries were found to: 

• Place no or low priority on supply of methane lowering feeds currently, but 

they expect that priority to increase over the next 5 years. 

• Be poorly informed regarding appropriate additives, with 4 or less of the 

14 respondents being aware of the three additives with highest efficacy 

(3-NOP, Asparagopsis and nitrate). 

• Have a belief that existing probiotics, essential oils and antibiotic rumen 

modifiers can be used for methane mitigation. 

Livestock managers themselves (largely in Brazil and Indonesia, and principally 

cattle managers) identified that they: 

• Saw greenhouse gas (GHG) reduction as a low priority but as increasing 

concern over the next 10 years. 

• Expected methane inhibitors to deliver an increase in animal performance 

and feed efficiency. 

• All 24 livestock managers said they would need additional information to 

support decisions on feed additive use for methane, with the majority 

anticipating seeking that information from current feed/additive suppliers. 
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Consequently, the industry assessment (completed after the technical reviews of 

additives) extends the list of research and development required (below) if feed 

additives are to be used to impact global climate change substantially. The 

industry assessment confirms the need to provide information on methane 

lowering additives to feed manufacturers and livestock managers. Clear market 

forces to promote adoption are just as important as the discovery of safe and 

effective additives if methane mitigation in global ruminant livestock systems is 

to be achieved. 

Outstanding research and development needs 
• For feed additives to act as agents for global change in livestock 

emissions, the over-riding need is for a quantitative understanding of the 

time-course and extent of mitigation when additives are provided in ‘pulse 

fed’ supplements rather than in every mouthful of a TMR. 

• Associated with this is the need to quantify the efficacy of methane 

mitigating additives in grazing and mixed feeding systems where feed 

intake is largely uncontrolled, and levels and variation in supplement 

intake between animals are largely unknown. 

• A strong economic argument for additive development and use requires 

the co-benefits from methane mitigating additives be defined. This is 

particularly true for animal production co-benefits such as liveweight gain 

and milk production. Because co-benefits are mostly 5% or less of current 

production, their estimation needs highly replicated studies to confirm 

statistical significance and so confidence in the scale of effect. Currently 

there is an optimism among feed or supplement manufacturers as well as 

livestock producers that these additives will improve animal performance 

and feed use efficiency. This is not strongly supported by the research. 

• There is a range of additive-specific issues (such as testing for residues in 

animal products or for animal welfare effects) that need to be identified 

and addressed. 

• The low number of additives identified as providing high level mitigation 

(>25%) even in total mixed rations is very low (3-NOP and Asparagopsis) 

and there is little sign of novel products emerging from within the other 

less effective additive groups reviewed. Consequently, the investment in 

novel additives (and non-nutritional means) to mitigate enteric emissions 

must be expanded. 

• Improved communication is required to overcome poor understanding 

among feed manufacturers and livestock managers about what methane 

suppressing additives exist and their efficacy in reducing enteric 

emissions. 
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Assessment of the 10 leading feed additives 

considered for livestock methane mitigation 
There has been a recent proliferation of research, publications, scientific reviews, 

and meta-analyses of strategies to reduce enteric methane emissions from 

livestock. A search on Scopus* revealed 187 unique, relevant publications arising 

in 2010/2011 but 461 in 2020/2021.  

In this assessment, we have primarily relied on reviews and meta-analyses. 

Before presenting our assessment, and with a view to providing a ready resource 

to expand the reader’s understanding, a list of recent broad-based scientific 

reviews of feeds and additives suppressing ruminant methane production is 

provided below. A list of more detailed reviews and meta-analyses for as many 

individual additives as were available is then presented before providing our 

consolidated assessment in a tabular form for each additive. 

Existing reviews on dietary inhibition of rumen 

methanogenesis 
 2021: Feed additives as a strategic approach to reduce enteric 

methane production in cattle: Modes of action, effectiveness and 

safety 

Honan M, Feng X, Tricarico JM, Kebreab E. Animal Production Science, 51(6), 

491-514. 

 2021: Methane Emissions from Ruminants in Australia: Mitigation 

Potential and Applicability of Mitigation Strategies 

Black JL, Davison TM, Box I. Animals, 11(4). 

 2021: Research progress on the application of feed additives in ruminal 

methane emission reduction: a review 

Sun K, Liu H, Fan H, Liu T, Zheng C. Zooilogical Science, 9.  

 2021: Recent Nutritional Advances to Mitigate Methane Emission in 

Cattle: A Review 

Hadipour A, Mohit A, Darmani Kuhi H, Hashemzadeh F. Iranian Journal of Applied 

Animal Science, 11(1), 1. 

 2020: Fifty years of research on rumen methanogenesis: lessons learned 

and future challenges for mitigation 

Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M. Animal, 48(2), 21-27. 

 2018: Dietary manipulation: A sustainable way to mitigate methane 

emissions from ruminants 

Haque MN. Journal of Animal Science and Technology, 60(1), 1-10. 

*Scopus search for “methane AND (mitigate* OR reduc*) AND (livestock OR sheep OR cattle) 

AND NOT (biogas)” 

https://dx.doi.org/10.1071/AN20295
https://dx.doi.org/10.1071/AN20295
https://dx.doi.org/10.1071/AN20295
https://doi.org/10.3390/ani11040951
https://doi.org/10.3390/ani11040951
https://doi.org/10.7717/peerj.11151
https://doi.org/10.7717/peerj.11151
http://ijas.iaurasht.ac.ir/article_680279_877d2935bda8044acfcdd9671a6bcec1.pdf
http://ijas.iaurasht.ac.ir/article_680279_877d2935bda8044acfcdd9671a6bcec1.pdf
https://doi.org/10.1017/s1751731119003100
https://doi.org/10.1017/s1751731119003100
https://doi.org/10.1186/s40781-018-0175-7
https://doi.org/10.1186/s40781-018-0175-7
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 2013: Special topics—Mitigation of methane and nitrous oxide emissions 

from animal operations: I. A review of enteric methane mitigation 

options 

Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, et al. Journal of Animal 

Science, 91(11), 5045.  

Existing inhibitor-specific reviews of methane mitigating feed 

additives 
3-Nitrooxypropanol 

 2020: The effects of dietary supplementation with 3-

nitrooxypropanol on enteric methane emissions, rumen fermentation, 

and production performance in ruminants: a meta-analysis 

Kim H, Lee HG, Baek Y-C, Lee S, Seo J. Journal of Animal Science and 

Technology, 62(1), 31-42. 

 2018: Antimethanogenic effects of 3-nitrooxypropanol depend on 

supplementation 

Dijkstra J, Bannink A, France J, Kebreab E, van Gastelen S. Journal of Dairy 

Science, 101(10), 9041-9047. 

 2018: Use of 3-nitrooxypropanol as feed additive for mitigating 

enteric methane emissions from ruminants: a meta-analysis 

Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M, Laconi EB, Nahrowi. 

Italian Journal of Animal Science, 17(3). 

Micro and macroalgae 

 2020: Management of enteric methanogenesis in ruminants by algal-

derived feed additives 

McCauley JI, Labeeuw L, Jaramillo-Madrid AC, Nguyen LN, Nghiem LD, Chaves 

AV, Ralph PJ. Current Pollution Reports, 6, 188-205. 

 2020: Seaweed and seaweed bioactives for mitigation of enteric 

methane: Challenges and opportunities 

Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, et al. Animals, 10(12). 

Nitrate 

 2020: Antimethanogenic effects of nitrate supplementation in cattle: 

A meta-analysis  

Feng XY, Dijkstra J, Bannink A, van Gastelen S, France J, Kebreab E. Journal of 

Dairy Science, 103(12), 11375-11385.  

 2014: A review of feeding supplementary nitrate to ruminant 

animals: nitrate toxicity, methane emissions, and production 

performance 

Lee C, Beauchemin KA. Canadian Journal of Animal Science, 94(4). 

https://doi.org/10.2527/jas.2013-6583
https://doi.org/10.2527/jas.2013-6583
https://doi.org/10.2527/jas.2013-6583
https://doi.org/10.5187/jast.2020.62.1.31
https://doi.org/10.5187/jast.2020.62.1.31
https://doi.org/10.5187/jast.2020.62.1.31
https://doi.org/10.3168/jds.2018-14456
https://doi.org/10.3168/jds.2018-14456
https://doi.org/10.1080/1828051X.2017.1404945
https://doi.org/10.1080/1828051X.2017.1404945
https://doi.org/10.1007/s40726-020-00151-7
https://doi.org/10.1007/s40726-020-00151-7
https://doi.org/10.3390/ani10122432
https://doi.org/10.3390/ani10122432
https://doi.org/10.3168/jds.2020-18541
https://doi.org/10.3168/jds.2020-18541
https://doi.org/10.4141/cjas-2014-069
https://doi.org/10.4141/cjas-2014-069
https://doi.org/10.4141/cjas-2014-069
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Essential oils 

 2020: A meta-analysis describing the effects of the essential oils 

blend Agolin Ruminant on performance, rumen fermentation and 

methane emissions in dairy cows 

Belanche A, Newbold C, Morgavi D, Bach A, Zweifel B, Yáñez-Ruiz D. 

Animals, 10(4). 

 2014: Essential oils and opportunities to mitigate enteric methane 

emissions from ruminants 

Benchaar C, Greathead H. Animal Feed Science and Technology, 166, 338-355. 

Antibiotic rumen modifiers 

 2013: Anti-methanogenic effects of monensin in dairy and beef 

cattle: A meta-analysis 

Appuhamy JADRN, Strathe AB, Jayasundara S, Wagner-Riddle C, Dijkstra J, 

France J, Kebreab E. Journal of Dairy Science, 96(8), 5161-5173. 

Saponins and Tannins  

 2021: The effects of dietary saponins on ruminal methane production 

and fermentation parameters in sheep: a meta-analysis 

Darabighane B, Mahdavi A, Aghjehgheshlagh FM, Navidshad B, Yousefi MH, Lee 

MRF. Iranian Journal of Applied Animal Science, 11(1), 15-21. 

 2021: Effects of Dietary Tannins’ Supplementation on Growth 

Performance, Rumen Fermentation, and Enteric Methane Emissions in 

Beef Cattle: A Meta-Analysis  

Orzuna-Orzuna J, Dorantes-Iturbide G, Lara-Bueno A, Mendoza-Martínez G, 

Miranda-Romero L, Hernández-García P. Sustainability, 13(13). 

 2021: Effects of saponin on enteric methane emission and nutrient 

digestibility of ruminants: An in vivo meta-analysis 

Ridla M, Laconi EB, Jayanegara A. In IOP Conference Series: Earth and 

Environmental Science, 788. 

 2012: Methane mitigation from ruminants using tannins and saponins 

Goel G, Makkar HP. Tropical animal health and production, 44(4), 729-739. 

Biochar 

 2019: The use of biochar in animal feeding  

Schmidt H-P, Hagemann N, Draper K, Kammann C. Peer, 7. 

Direct fed microbials 

 2019: Environmental efficiency of Saccharomyces cerevisiae on 

methane production in dairy and beef cattle via a meta-analysis 

Darabighane B, Salem AZM, Mirzaei Aghjehgheshlagh F, Mahdavi A, Zarei A, et 

al. Environmental Science and Pollution Research, 26, 3651–3658

https://doi.org/10.3390/ani10040620
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Broad-based assessment of methane 

mitigating feed additives for ruminant use 
The following pages comprise consolidated assessments of a broad range of 

commercially important attributes, as per the Table below, for additives being 

considered for livestock methane mitigation. All references cited are provided 

in a combined bibliography at the rear of this report and can be immediately 

reached by the “See the reference list” hyperlink for each additive. 

Evidence of 
efficacy 

Magnitude of mitigation defined in meta-analyses and 
scientific reviews. Only relies on animal (in-vivo) studies. 
Meta-analyses of laboratory studies (in-vitro) may be noted 
but were not used in efficacy assessment.  

Mode of action What is the biochemical or microbiological basis of action? 

Dose Recommended inclusion rate of additive in feed. 

Manufacturer Current or emerging manufacturers of the additive. 

Availability Is the product available locally, globally, or restricted? 

Impacts on animal 

production 

How does the additive affect growth, milk production and 

feed-use efficiency or nitrogen use efficiency where known? 

Applicability What livestock sectors is this additive suitable for? 

Expected market 
trajectory 

Based on its efficacy, market availability, applicability and co-
benefits or constraints. 

Expected cost US$ /kg where known. 

Constraints to use Availability, registration requirements or prohibitions, 

stability, and suitability of additive for delivery.  

Residue in animal 
product 

Evidence of additive derived materials in blood, milk, or meat. 

Impacts on manure Nitrogen distribution effects (manure v urine). 

Potential regional 

distribution 

Is distribution limited by feeding system, by site of 

production, or by regional regulations? 

Life-cycle 
Assessment (LCA) 

LCA analysis on the carbon cost of the additive itself and/or 
the effect on the carbon cost of livestock enterprises when 

using this additive. 

Actions needed to 
accelerate the roll-
out 

Research, marketing, and development tasks required to 
advance this additive to commercial delivery. 

Assessment 
Summary 

Provides a concise summary of key factors affecting this 
additive’s potential to contribute to GHG mitigation from 
agriculture. 
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3-Nitrooxypropanol (3-NOP) 
See the reference list 

Evidence of 
efficacy 

Refereed literature shows a consistent efficacy of 3-NOP in reducing daily methane production (g/d) and 
methane yield (g CH4/kg dry matter (DM)) and there is a strong positive linear association between 3-NOP 

dose and level of mitigation achieved8, with CH4/kg DMI declining linearly at 0.41 per 1 mg 3-NOP/kg feed9. 
The average dose in the literature of 123 mg 3-NOP/kg DMI was shown to cause 23% (in beef) and 39% (in 

dairy) reduction in emissions10. At lower doses persistence over several months declined11,12 but not at 
expected commercial dosages. Efficacy does show some diet dependency, being greatest in low forage diets8. 

Meta-analyses of 3-NOP efficacy have been undertaken by Dijkstra et al.10, Jayanegara et al.13, Kim et al.9 
and de Almeida et al.14. De Almeida et al.14 reported a mean 29% reduction in methane yield associated with 
3-NOP inclusion. 

Mode of action In the normal final reaction of Archaeal methane production, the methyl-coenzyme M reductase (MCR) 
enzyme docks with methyl-coenzyme M and methane is produced. 3-NOP has a similar chemical structure to 

methyl-coenzyme M so it can take methyl-coenzyme M’s place and bind to MCR, although no methane is 
produced15. Rather the 3-NOP oxidises the Nickel in MCR to make it no longer able to bind to methyl-

coenzyme M. This oxidation by 3-NOP produces nitrate and nitrite, and ultimately 1,3-propanediol as 3-NOP 
is degraded in the rumen15.   

Dose 40-340 mg 3-NOP/kg DM has been used in research, but practical doses of approximately 100 ppm are 
expected, offering mitigation without feed intake inhibition. 

Manufacturer DSM (Koninklijke DSM N.V. or Royal DSM). The use of feeding nitro-oxy organic compounds to reduce 
ruminant methane emissions and or improve ruminant performance is patented (WO2012084629A1). 

Availability The commercial name of 3-NOP in the EU is Bovaer®. Bovaer is still in research trials to support global 
product registrations but has been used in large scale commercial trials in beef cattle16. It has just received a 

positive opinion from the European Food Safety Association (EFSA) for Bovaer® in the European Union 
(22/11/2021) as a step-in clearance to enable ratification for use by member countries in the EU and is 

awaiting registration through the FDA for North America. Many of the Latin American countries can be 
expected to also accept registration based on EFSA approval, with recent approval in Brazil and Chile. 
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Australia, North America and New Zealand lack a registration pathway for additives with environmental 

claims, but the positive EFSA opinion may facilitate registration in these countries also. 

Impacts on 

animal 

production 

Overall, there is minimal effect on production, but due to a slight reduction in feed intake by 3-NOP fed 

animals, there may be an improvement in feed efficiency. Meta-analyses of 3-NOP actions reported the 
following overall effects from the literature: 

Diet Digestibility: 3-NOP supplementation did not alter fibre digestibility14. 

Feed Intake: 3-NOP supplementation reduced DMI up to 4.5 % overall14 (P = 0.02) but showed no effect in 

many studies and was not significant in Jayanegara’s meta-analysis in 201713. Kim et al.9 reported a (near 
significant) decline in DMI with 3-NOP inclusion in beef but no effect in dairy cattle.  

Live weight gain: Significant data on grain-based diets showed no advantage to live weight gain from 3-NOP 
inclusion14 and there may be reductions in growth at high levels of 3-NOP inclusion8. 

Milk production: Melgar et al.17 found no effect on milk production in high yielding Holsteins but an increase 
in milk fat with 3-NOP. Haisan et al.18,19 also found no change in milk yield with 3-NOP. 

Applicability As a synthetic compound being introduced into the human food chain, registration of 3-NOP is likely to be 
required wherever it is used. Initial registration applications are likely to be sought for the intensively fed 

industries, primarily feedlot and dairy. It has recently (09/09/2021) received full market registration 
approvals for Brazil and Chile.The positive opinion of Bovaer® from EFSA will facilitate Bovaer’s delivery into 

Europe. 

Feedlot: 3-NOP is highly suited to feedlot application as an exact control of 3-NOP/kg DMI is possible due to 
regulation of DM offered. 

Cut and carry: Inclusion of 3-NOP in concentrate or premix for ruminants fed cut pasture is highly possible as 
has been done in research trials2. 

Dairy: In farms where cattle are housed for much or all of the year, 3-NOP can be added directly to the 
ration, supplement, or premix to regulate daily 3-NOP intake. 

Grazing: While 3-NOP could conceivably be delivered in licks, blocks and concentrate supplements, this 
extremely large sector is likely to be the last for commercial development due to the need: to develop 

suitable delivery products; address any needs for stability and slow release in products that may demand a 
considerable shelf life before use; and accommodate diet effects on efficacy10. 

https://www.dsm.com/anh/en_US/news-events/press-releases.html
https://www.dsm.com/anh/en_US/news-events/press-releases.html


Library of ruminant feed additives 

 

20 

Expected 

market 

trajectory 

As a patented product, the marketing of 3-NOP will be controlled by the manufacturer but the probable 

pattern for release seems to be in intensive feeding environments for milking cows and feedlot beef, and then 
grazing ruminants once a delivery pathway in supplements is developed. 

Expected cost While no costing data has been released by the manufacturer, DSM already supply other pure additives as 
well as commercial premixes globally, so have solid basis for pricing. 

Constraints to 

use 
The initial constraint is that 3-NOP is only registered for use in Brazil and Chile and therefore not 
commercially releasable for use elsewhere. Label development will require the manufacturer to state a target 

dose or dose range with directions on administration. The lack of research in grazing livestock and in sheep 
will further delay use from these emission sources. There is a small amount of evidence for residual 

mitigating impact of short term 3-NOP administration to young stock on long-term methane emissions20, 
which may create a new option for supplementation. 

Residue in 

animal product 
3-NOP is metabolized rapidly, and does not accumulate in the mammalian bloodstream9. Moreover, 3-NOP 

and its metabolites were not found to have mutagenic or genotoxic potential8. In compliance with regulatory 
requirements, the manufacturer has a dossier on residues and health impacts of 3-NOP. 

Impacts on 

manure 
Reynolds et al.21 found while high levels of 3-NOP could increase faecal DM and N output, this did not occur 
at more practical levels (500 vs 2500 mg 3-NOP/d). Manure from 3-NOP fed cattle did not produce less 

methane in a biogas digester than that of control cattle, though initial production may be delayed22. Owens et 
al.23 concluded “composted and stockpiled 3-NOP manure can be used as a nutrient source for forage crops 

without requiring changes to current manure management because it has minimal influence on soil health.” 
In summary there appears to be no adverse attributes affecting manure disposal or use as a result of dietary 

3-NOP inclusion. 

Potential 

regional 

distribution 

3-NOP can be a globally available product, subject to registrations and future development into a product 

deliverable to grazing livestock. While research has primarily addressed efficacy in cattle, it may be expected 
to perform in a similar manner in small ruminants24. 

Life-cycle 

Assessment 

(LCA) 

Feng and Kebreab25 state “the carbon footprint of emissions associated with 3-NOP production…to be 52 kg 
CO2e/kg 3-NOP produced (DSM Nutritional Products)”. They modelled enterprise emissions and reported 3-

NOP use across the whole dairy herd in California could reduce the GHG footprint by 13.7%.  
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Alavarez-Hess et al.26 conducted a partial life cycle assessment of 3-NOP use, including emissions associated 

with on-farm activities and emissions associated with production and transport of major production inputs. 
They studied two Australian dairy farms, one Australian beef farm, one Canadian dairy farm and one 

Canadian beef farm. The reductions in emissions from feeding 86 mg/kg DMI on dairy farms in Australia and 
Canada over 120 d were 6% and 15% respectively, and 12% and 19% for a 300 d lactation. On Australian 

and Canadian beef farms, the reduction in emissions from 200 mg 3-NOP/kg DMI in the diet of growing stock 
were 9% and 6% respectively, while considered over the whole herd mitigation was greater at 23% and 

15%.  

Actions needed 

to accelerate 

technology 

roll-out 

Bovaer® is progressing through registration in Europe and the USA. In Australia and New Zealand its 
registration will require formation of a new class in the registration process for feed additives of 

environmental impact. DSM is managing the marketing, manufacture, and release of this patented product. 
Because productivity gains have typically been small, it may require large scale trials to confirm and quantify 

any productivity effects. Confirmation of increased productivity would support a business case for use that 
was not dependent upon the availability of a carbon market. 

For global impact, there is also needed to evaluate the efficacy of 3-NOP in supplements suitable for grazing 
livestock, rather than just in total mixed rations. This may well need product modification to enable sustained 

rumen efficacy, an understanding of levels and variation in supplement consumption, and research on the 
frequency of supplementation to achieve target herd mitigation. Current evidence suggests that CH4 

emissions return to pre-treatment levels within a few days after the administration of 3-NOP ceases. 

Assessment 

Summary 
3-NOP is a commercially patented, globally applicable synthetic methane-suppressing feed additive used at 

very low inclusion rates (60-200 mg/kg diet DM). It has a high and consistent mitigation efficacy across fully-
fed sheep, dairy, and beef cattle although little data on delivery to, or efficacy in, grazing ruminants is 

available. Life cycle assessment analysis (LCA) of the product manufacture and of its system impact on whole 
farm emissions shows the embedded manufacturing emissions and associated on-farm system emission 

changes with 3-NOP are minor compared to its enteric mitigation impacts. Residues in animal products do not 
occur. Published meta-analyses identify there is high agreement and robust evidence of very high 

(>25%) efficacy in reducing enteric methane production. There is medium agreement and limited evidence 
that 3-NOP increases animal growth or milk production of supplemented cattle. 3-NOP is undergoing 
registration in Europe (Bovaer®) and North America. Registration laws may require registration by a name 

other than Bovaer® in some countries. 
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Freeze-dried Asparagopsis meal 
See the reference list 

Evidence of 

efficacy 

The efficacy of freeze-dried Asparagopsis meal has been shown in the laboratory 27,28,217,219 and in sheep30, 

beef cattle31,40, and dairy cattle32,41. Efficacy of methane reductions has varied across these studies, due to 

different rations and variable concentrations of bromoform in the Asparagopsis used. A meta-analysis of 

effects of feeding predominantly Asparagopsis algae to cattle found a reduction in methane yield of 37% or 

5.3gCH4/kg DMI33 (8 comparisons, 4 publications). There is an indication that efficacy is affected by dietary 

fibre with greater efficacy on high concentrate diets than on high forage diets31. 

The only study to test the efficacy of Asparagopsis fed to sheep30, offered loosely with their total diet at 

inclusion in diet formulation and seaweed quality in all the aforementioned studies resulting in a large 

variation in levels of 1.0%, to 5.7% on a DM basis, achieved 15% through to 81% mitigation for these 

inclusion levels, respectively.  

A test of the efficacy of Asparagopsis in feedlot steers found up to a 98% reduction in methane40 using a 

0.38% DM inclusion rate, coupled with a 42% improvement in average daily weight gain. Similar trends were 

found by Roque et al (2021)31 where beef cattle were supplemented with between 0.45% DM and 0.91% DM 

Asparagopsis, and methane was reduced by up to 80% and feed-to-gain efficiencies were increased by 14%. 

This study also demonstrated the efficacy of Asparagopsis for high-, mid- and low-forage diets, as well as 

persistent methane reductions for the 21-week period.  

Two studies have been conducted in dairy cows and are the most variable in terms of methane reductions. 

Roque et al (2019)32 found as much as a 43% methane reduction when 1.84% Asparagopsis DM was included 

in the diet. Stefenoni et al (2021)41 reported methane reductions as high as 80% using 0.5% DM.  

There is a large variation antimethanogenic response. A recent meta-analysis showed a mean methane 

reduction of 49% inclusive of variable feeding rates across the Asparagopsis studies14. However, this analysis 

did not include the two most recent studies to be published, both with methane reductions up to 80%31,41.  

Mode of 

action 

The bioactive array of algal chemicals is complex35 and many compounds have potential methane-suppressing 

effects. Some, but not all, seaweeds have the capability of synthesizing and encapsulating halogenated 

methane analogues (such as bromoform) within specialized gland cells219. In Asparagopsis, bromoform has 
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been shown to be the principal compound suppressing methane emissions29. Bromoform (CHBr3) and other 

halogenated methane analogues such as bromochloromethane (BCM) work to inhibit methanogenesis by 

binding to and sequestering the prosthetic group required by methyl co-enzyme M reductase (MCR), which is 

ultimately responsible for the last step in methanogenesis37, 221,222,223. 

Inclusion 

Rate 

It has been hypothesized that Asparagopsis inclusion rates should not exceed 1% DM due to reductions in dry 

matter intake at higher inclusion levels, with many studies using 0.2–0.5% Asparagopsis DM in diet DM. 

Additionally, inclusion levels ranging from 0.20–0.91% DM may also contribute to increased animal 

productivity concomitant with methane inhibition31,40. An appropriate inclusion level will need to be based on 

diet formulation and consistency of concentration of bromoform within the Asparagopsis material.  

Manufacturer Asparagopsis is sourced from both wild harvest and from commercial farms with an increasing number of 

Asparagopsis producers developing in both the northern (e.g., Greener Grazing, Blue Ocean Barns, 

Symbrosia, Volta Greentech) and southern hemisphere (e.g., Sea Forest, CH4 Global, Seascape Restorations, 

The Aquaculture Group). However, the majority of growers are currently (October 2021) in the development 

phase and are building up stocks for commercial sale. The use of Asparagopsis for methane mitigation and 

productivity gains in ruminants is protected by patents controlled exclusively by FutureFeed 

(https://www.future-feed.com/) and commercial suppliers must be licensed by FutureFeed. Specifically, there 

are patents around a ‘Method for reducing total gas production and/or methane production in a ruminant 

animal’ (Ref: WO2015109362; TW8808; PCT/AU2015/000030) and for ‘Growth performance improvements in 

pasture and feedlot systems’ (Ref: WO2018018062; TW9069; PCT/AU2016/050689). Further details of patent 

coverage are available from https://www.future-feed.com/our-patents. 

Availability It is expected that commercial availability of Asparagopsis will begin in early to mid 2022.  

Impacts on 

animal 

production 

In a meta-analysis of cattle studies, Lean et al.33 found no effect of (predominantly) Asparagopsis algae on 

growth rate, nor any effects on DMI. Across these cattle studies, Asparagopsis improved feed conversion 

efficiency by 7%. However, severe feed refusals at approximately 6% inclusion in DM30 and a reduction in 

feed intake at 1.84% vs 0.92% in diet DM32 have been observed, and a reduction in intake at 0.5% vs 0.25% 

in DM41, suggests inclusion levels should be restricted to <1% in diet DM. Lactating dairy cows appear to be 

the most sensitive to Asparagopsis inclusion in the diet, with DMI reductions of 38% at a 1.84% in DM 

inclusion rate and a reduced milk production as a direct consequence32. When incorporated in a TMR, 

Asparagopsis inclusion should be kept under 1% DM to avoid decreases in intake of the seaweed resulting 

https://www.future-feed.com/
https://www.future-feed.com/our-patents
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from reduced diet DMI (R. Kinley pers. comm.), but reduced intake has on occasion been linked to an 

increase in feed-to-gain conversions in growing beef steers31. At inclusion levels below 0.5% animal 

performance response has been variable, with Kinley et al.40 finding 0.18 and 0.37% inclusion in DM resulted 

in a 53% and 42% increase in daily weight gain respectively. In contrast, Li et al.30 found no effect of 

Asparagopsis inclusion on live weight change of 2-year-old sheep. Daily milk production41 was not reduced by 

Asparagopsis at 0.25% inclusion in DM41 but was reduced by 0.5% inclusion, and was reduced at 1.84% 

Asparagopsis in DM in another study31.  

Applicability Preparation and storage conditions are important to minimize bromoform volatilization39. Freeze dried product 

is currently the gold standard, although other forms of processing, including an Asparagopsis oil suspension, 

are being investigated4.  

There are co-benefits from Asparagopsis farming because seaweed production can be improved by utilizing 

waste nutrients (P, N, CO2) from other forms of aquaculture (finfish, shellfish, prawns), if co-located. 

Asparagopsis farming can also enhance regional economies by using local labour, and Asparagopsis is seen as 

a multifunction feed ingredient in a circular economy. However, potential impacts of harvest on biodiversity 

and ecosystem health need to be considered in natural aquatic systems. 

Expected 

market 

trajectory 

There are multiple Asparagopsis producers advancing in capability and scale in Australia, New Zealand, North 

America, and Europe, and it is expected that the algae farming industry in SE Asia will be engaged to produce 

Asparagopsis and expand the capability for large scale global supply. Industrial production facilities in 

temperate latitudes are also under development. 

Expected cost The market will determine pricing. One Oceania supplier has been quoted at US$26/kg (AU$35) although 

price is expected to drop rapidly from the current high when product supply increases. 

Constraints to 

use 

Bromoform can be produced in drinking water naturally or as a result of chlorination after desalination and is 

considered a probable human carcinogen, with low levels of inhalation and oral ingestion thought to occur 

from drinking water and pools (refer to: https://www.epa.gov/sites/default/files/2016-

09/documents/bromoform.pdf). Bromoform is recognized as an animal carcinogen (ACGIH: A3) and has been 

associated with renal and liver toxicity42. However, Kinley et al.40 found no bromoform residue in meat or 

kidneys of cattle fed Asparagopsis. There is currently (October 2021) no literature on the metabolic fate of 

bromoform in the ruminant digestive system. Reductive dehalogenation, the breakdown of halogenated 

https://www.epa.gov/sites/default/files/2016-09/documents/bromoform.pdf
https://www.epa.gov/sites/default/files/2016-09/documents/bromoform.pdf
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compounds such as bromoform, has been shown in certain types of bacteria such as Dehalobacter and 

Desulfovibrio species224.  

Bromoform released into the atmosphere from any source can contribute to ozone depletion43,225. Due to the 

need to preserve Asparagopsis bromoform concentrations in the feed for enteric methane reductions, loss 

from livestock feeds will always be minimized. While excess iodine intake from marine algae is possible, iodine 

level in algae can be reduced by processing44 and by managed cultivation. 

Residue in 

animal 

product 

No bromoform residues were found in samples of kidney, liver, faeces, fat, muscle tissue, or milk, taken from 

sheep30 and beef cattle31,40 which had been offered Asparagopsis at the low effective levels. Low levels of 

bromoform have been found in milk (even from cows not consuming Asparagopsis), although no significant 

increases in milk bromoform concentrations have been found in cows fed Asparagopsis 32,41. In a study with 

lactating dairy cows the level of safety of inclusion of Asparagopsis in cattle feed was tested under extreme 

conditions45. Trace levels of bromoform were found in a milk sample from a cow normally consuming up to 18 

kg/d DMI which was restricted to only 1.2 kg DMI and provided with an extreme concentration of 

Asparagopsis on the day prior to morning milk collection. The milk bromoform content was less than half the 

USEPA drinking water standard for bromoform45. 

Iodine residues have not been tested widely and the information is very limited. Roque et al. (2021)31 tested 

beef strip loins for iodine residues and found 0.00015 mg/g of iodine in steers fed 0.5% OM Asparagopsis for 

147 days. Total Asparagopsis iodine fed per day was approximately 199.1 mg/day, which indicates a very low 

iodine transfer rate between Asparagopsis and meat for human consumption. Stefenoni et al. (2021)41 

reported milk iodine concentrations of 0.00297 mg/g but did not report levels of iodine in Asparagopsis fed or 

the transfer rate between that and milk. 

Impacts on 

manure 

Marine and freshwater macroalgae have long been used as soil conditioners, both in raw46 and biochar47 form. 

Furthermore, liquified seaweed or its extracts have been widely used as bioactives for soil/plant health48. 

Being of marine origin, Asparagopsis is rich in bromine and iodine. No bromoform residue has been found in 

manure samples, although impacts on compost and/or anaerobic digestors warrant investigation. Muizelaar et 

al (2021)45 found low levels of bromoform in the urine of dairy cows near the USEPA standard for drinking 

water for up to the first 10 days of receiving high levels of dietary Asparagopsis, although in subsequent urine 

testing bromoform could not be detected. As livestock have no way of storing bromine or iodine derivatives, 
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these must ultimately be excreted but there is no indication that this has adverse effects on soil. Other algal 

bioactives from unprocessed or pyrolyzed seaweeds potentially are beneficial to soil health. 

Potential 

regional 

distribution 

There are tropical (A. taxiformis) and temperate (A. armata) Asparagopsis species being farmed. These can 

be grown in diverse marine habitats as well as cultured in artificial growth environments including land-based 

systems, capitalizing on the different growth stages of the life cycle. Key market regions identified by 

FutureFeed are Australia, NZ, EU, USA and Canada. 

Life-cycle 

Assessment 

(LCA) 

Many LCAs have been conducted for growing algae for biofuel production49 but these growth systems are 

quite different to those which will be used for Asparagopsis, for which no LCA is currently available. At the 

time of this publication, there are three independent articles under review.  

Actions 

needed to 

accelerate 

technology 

roll-out 

Currently (2021) most Asparagopsis grown is being used as seed material to scale up production. FutureFeed 

expects supply for early adopters in beef feedlots in 2022, and in dairies in 2022/23. Commercial expansion 

will require: 

• Clarification of any biosafety issues (bromine, iodine levels in animal products) 

• Shelf-stability of product and data and guidelines on inclusion rates for all industries  

• delivery mechanisms for grazing industries 

• Description of mitigation when provided as infrequent pulse in supplement instead of a total mixed ration 

• Clarification of Asparagopsis percentage in DM verses bromoform intake as the basis for describing 

inclusion level 

• Appropriate jurisdictional regulatory approval for use as a feed ingredient in each country. 

Assessment 

Summary 

There is growing capacity to farm Asparagopsis in natural marine locations or tanks. The feeding of 

Asparagopsis to ruminants for methane mitigating purposes is patented. Asparagopsis has at least one natural 

methane inhibiting compound (bromoform). Pure bromoform can have undesirable impacts on the animal as 

well as the atmospheric ozone layer. Whether bromoform levels in livestock Asparagopsis supplements are of 

a safety or environmental concern and the potential for residual bromine and iodine in food products are 

under investigation. While there is a need or more animal studies, Asparagopsis is highly effective in reducing 

methane emission and there is high agreement and modest evidence (<10 publications) that low levels of 

inclusion of <0.5% Asparagopsis in a TMR feed will achieve very high mitigation (>25%) of rumen methane 

output. There is also limited evidence and low agreement that Asparagopsis increases growth rate in 

ruminants, but it does show a consistent improvement in feed efficiency. 
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Nitrate 
Nitrates (NO3) are highly soluble salts and are readily reduced in the anaerobic rumen. Their reduction to ammonia uses hydrogen 

that would otherwise be used in methane production, so they competitively reduce methane emissions. They also provide a source 

of nitrogen for microbial protein synthesis in the rumen. However, there is some dose-dependent risk of toxicity to the animal from 

accumulation of the chemical intermediate nitrite (NO2). 

See the reference list 

Evidence of 

efficacy 

Based on stoichiometric relationships, 1% NO3 in the diet DM should reduce methane production for grazing 

animals by 12.5% (from 20.7 to 18.1 g CH4/kg DMI) assuming the methane yield for grazing cattle50. This 

percentage would be higher in feedlot diets where methane yield is already low. In a meta-analysis of cattle data, 

Feng et al.51 reported an overall mitigation of 11.4% per 1% nitrate mitigation or 13.2% if slow-release nitrate 

studies were excluded. Where slow-release nitrates have been fed (to protect from nitrite toxicity), the 

appearance of NO3 in faeces suggests the nitrates were not adequately released in the rumen52,53. Simulation of 

on-farm usage in three enterprises26 showed less than a 5% methane mitigation in 2 of 3 enterprises. 

Mode of 

action 

Microbial reduction of nitrates (NO3
-) through to ammonia (NH3) provides a thermodynamically favourable 

electron (and hydrogen) sink in the rumen compared to reduction of CO2 to CH4. Consequently, nitrate can be 

expected to competitively reduce methane production in a predictable manner, such that for every mole (62 g) of 

nitrate consumed, methane production would be reduced by one mole (16 g). While this strict relationship is not 

always seen, typically the mitigation is >80% of that expected. It has been hypothesized that nitrate may also 

support methane oxidation54, but this should not change the total impact of nitrate on CH4 production. 

Dose Because a potentially toxic intermediate, nitrite (NO2
-), is produced and can accumulate in the rumen and enter 

the blood55, the dose is typically limited to 2% nitrate in the diet DM. Dosage can be higher if the rumen 

microbiota is adapted to increasing concentrations of nitrate, but to minimise risks to animal health commercially 

1% inclusion is recommended for SilvAir by Cargill. 
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Manufacturer Nitrates are widely produced for fertilizer use. Because of the risk of ammonium nitrate being used in explosives, 

its availability is often restricted and so calcium nitrate is the preferred source. There are multiple suppliers of 

calcium nitrate with the global fertilizer manufacturer Yara preparing a feed-grade source. Calcium nitrate for use 

as animal feed is trademarked by Cargill as “SilvAir”.  

Availability Nitrate salts are widely available globally for agronomic use. 

Impacts on 

animal 

production 

In nutrient-adequate diets, there is often no performance response to nitrate in grazing56, feedlot57 or dairy58 

animals. Nitrate can suppress feed intake at higher inclusion levels57,59 and can cause sorting of feed53, so 

ruminants must be introduced slowly to 2% nitrate in dietary increments. 

Applicability The two most likely applications of dietary nitrate are in feedlots, where it can be mixed in a total mixed ration in 

either dry form or in liquid supplement to avoid toxicity, and in ruminants grazing low protein forages such as in 

the dry season tropics60. In either situation it can be used to replace urea. Achieving 2% nitrate in the total diet 

via supplements is difficult due to the large mass required, the risk of nitrite accumulation from rapid ingestion, 

as well as the finding that the desired mitigation may not be achieved56. 

Expected 

market 

trajectory 

The uptake of nitrate has been minimal, but its two most likely points of uptake are in feedlots (where it can be 

more safely mixed and fed in rations), and in the tropics where it may provide a source of nonprotein nitrogen in 

supplements.  

Expected 

cost 

While calcium nitrate and urea have similar costs (US$730 vs US$606/t landed Australia) the lower N content of 

calcium nitrate (15.5% N v 44.6% N) means the cost/unit N is almost 2.5-fold higher for calcium nitrate as a N 

supplement. Since there are few reports of productivity gains from calcium nitrate over urea, the carbon credit 

value of the methane deferred would be the economic justification for using nitrate.  

Constraints 

to use 

The two principal constraints to nitrate feeding are the purchase cost and the risk of poisoning and death of 

animals from nitrite absorption. For this reason, slow-release forms have been evaluated53,61, but as nitrates are 

already an expensive source of feed nitrogen relative to urea, incurring further costs to regulate rumen release is 

unlikely to be economically feasible. 
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A further practical constraint to nitrates as feed supplement is that because the N% is low (15-23% N), providing 

nitrate in a loose-lick or lick block for grazing animals requires at least twice the space in a supplement mixture 

as the same quantity of N as urea. Given that rangeland cattle only consume 100-150 g of supplement/d it 

becomes very difficult to get in the desired level of N supplement as nitrate. Further, the supplement is often 

consumed in a short period, so the risk of nitrite toxicity is increased and there can be substantial variation in 

supplement intake in pastured animals. 

In the manufacturing sector avoidance of potentially explosive nitrates is important to minimize warehousing and 

processing safety requirements. 

The feeding of nitrates for methane mitigation is covered by global patents (e.g., WO2011010921A2 originally 

implemented by Cargill). 

Residue in 

animal 

product 

Nitrates naturally occur in feeds and are naturally produced in mammalian metabolism. A study of nitrate and 

nitrite disposal in sheep showed substantial accumulation in the skin55. No evidence of potentially toxic 

nitrosamines was found in tissues of nitrate-fed cattle57. 

Impacts on 

manure 

Dietary nitrate is readily reduced in the rumen and Villar et al.55 found that in sheep over 6 days, 14% of nitrate-

N was excreted in faeces and 49% in urine, with some of the urinary nitrogen present as urea. A portion of the 

nitrate was also recycled back into the gut. In beef heifers, encapsulated nitrate has been shown to increase the 

nitrate content in urine and faeces but not total nitrogen excretion62. 

Potential 

regional 

distribution 

Globally available as sodium, potassium, calcium or ammonium nitrate fertilizer. The commercial feed-grade 

product SilvAir is already available and in commercial demonstrations in Brazil and Europe, while incentive 

schemes are being implemented. 

Life-cycle 

Assessment 

(LCA) 

Calcium nitrate manufacture shows a carbon cost of 650 grams of CO2/kg SilvAir using LCA methods (value from 

Cargill). LCA of the production and use of ammonium nitrate or calcium ammonium nitrate shows the GHG 

impact primarily arising from on-farm emissions but that the global warming potential for their production is 

approximately 3 times that of urea63. 
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Actions 

needed to 

accelerate 

technology 

roll-out 

Nitrate is a chemically simple, widely available synthetic nutrient that has a high, predictable and well understood 

mechanism for reducing methane production. It is suitable for implementation in total mixed ration feeding 

systems, but more studies at a commercial scale are required. It is unlikely to be applicable in extensive 

environments due to the difficulty in safely delivering the required quantity through supplements, without 

incurring extra cost through developing slow-release formulations. Cargill have negotiated two approaches to 

overcome economic costs, being (1) government subsidy and (2) industry subsidy for Silvair use. In the absence 

of productivity gains, this may also be required in other adopting countries. 

Assessment 

Summary 

Inclusion of nitrate for methane mitigation is covered by global patent protection. The calcium nitrate form is not 

constrained by (explosion) risks associated with ammonium nitrate and is globally available as a fertilizer. There 

is high agreement and robust evidence (>25 publications) of high efficacy in mitigating enteric methane, with 

mitigation of approximately 10% per 1% nitrate by weight in the diet, using a maximum of 2% inclusion to 

minimize risks of nitrite toxicity. Its safest use is in a total mixed ration as it is difficult to supply adequate nitrate 

through a low intake supplement. There is little reason to expect nitrate to improve animal productivity in 

nitrogen adequate diets, but it may provide an alternative to urea as a supplement to stimulate feed intake and 

performance of ruminants eating diets lacking rumen degradable nitrogen. Dietary nitrate is not associated with 

residue in animal products. 
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Antibiotic Rumen Modifiers 
Antibiotic rumen modifiers include ionophores (such as monensin, lasalocid and salinomycin) as well as phosphoglycolipid 

antibiotics such as bambermycin and antibiotics such as virginiamycin, a streptogramin antibiotic. They do not all have the same 

mode of action so their effects on methane emissions are inconsistent. However, monensin is the most commonly used antibiotic 

rumen modifier that has been most heavily researched and therefore the comments below are largely based on monensin findings. 

See the reference list 

Evidence of 

efficacy 

A recent meta-analysis of monensin use in beef and dairy found that when adjusted for DMI differences, 

monensin reduced daily methane production by 5% (22 studies) and Ym (% of Gross energy intake lost as CH4) 

by 4%64 (20 studies). Immediate mitigation is routinely observed upon introduction, but efficacy can diminish 

over time and is sometimes not found in long term studies65. 

Mode of 

action 

There are two mechanisms by which monensin reduces methane production.  

1) It reduces feed intake64 and  

2) It affects the balance of hydrogen production and use by differential effect on the microbiota, reducing 

the quantity of hydrogen available for methane production. It has no direct effect on the methane 

producing organisms66. 

Dose Typically evaluated at 16-50 mg/kg DM 

Manufacturer Monensin is produced and marketed as a coccidiostat for poultry as well as for improving feed efficiency in 

ruminants outside of the European Union. Its patent, and many other rumen modifier patents, have now 

expired and there is a large number of generic producers world-wide supplying independently produced post-

patent products. 

Availability Globally available. Original production by Elanco Animal Health but now generic products are widely distributed 

under multiple brands. 
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Impacts on 

animal 

production 

Feedlot cattle fed monensin-containing diets gained 1.6% faster, consumed 6.4% less feed and required 7.5% 

less feed/100 kg gain than cattle fed control diets67. In dairy cows monensin is highly effective in protecting 

against bloat68. From a meta-analysis of 71 studies, Duffield et al.69 concluded monensin significantly decreased 

dry matter intake by 0.3 kg/d, increased milk yield by 0.7 kg/d and improved milk production efficiency by 

2.5%. Monensin decreased milk fat percentage by 0.13% with no effect on milk fat yield. 

Monensin is also effective in reducing bloat in beef68 and in dairy cattle where it has been delivered by slow 

release intraruminal device for cows grazing alfalfa, clover or wheat to reduce the incidence of frothy bloat. 

Applicability Monensin is manufactured and used widely (not in EU) in total mixed rations and supplements. 

Expected 

market 

trajectory 

Given the availability of monensin and its multiple points of manufacture it is unlikely that it’s modest impact on 

emissions will cause a growth in market penetration for mitigation outcomes. 

Expected 

cost 

Monensin (active ingredient) is approximately US$28/kg and sold in 10-40 g monensin/100g mix DM premixes. 

Constraints 

to use 

Monensin is moderately toxic to horses70 and dogs so care must be taken with regard to access by non-target 

species. As monensin is an antibiotic, its administration through feed to cattle has been banned in the EU and 

could be potentially restricted in other jurisdictions in the future.  

Residue in 

animal 

product 

Monensin has been found in milk at levels not considered a risk to human health71 and tissue residue levels 

have been specified for meat and milk72.  

Impacts on 

manure 

Monensin is incompletely absorbed from the ruminant digestive tract and is partially metabolized and 

excreted73. Monensin that is not absorbed is excreted in its original form in faeces, where it is further degraded. 

Residues in lagoons and shallow ground water have been detected74. Its presence can also change soil and root 

characteristics, but this does not necessarily imply that it has an adverse impact on soil health. 

Potential 

regional 

distribution 

Global (out of patent) except it is prohibited for use in the European Union. 
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Life-cycle 

Assessment 

(LCA) 

Webb et al.75 conducted a partial LCA of cattle production for GHG emissions, fossil energy use, water use, and 

reactive N loss to evaluate production systems utilizing additive combinations with growth promoting 

technologies. 

● The use of ionophores reduced GHG emissions and water usage by 1%, had no effect on energy use and 

increased reactive N loss by 1%. 

● The use of ionophores in combination with anabolic implants reduced GHG emissions (8%), energy usage 

(5%), water usage (6%) and reactive N losses (5%). The use of ionophores in combination with implants 

and a beta-agonist reduced GHG emissions (6%), energy usage (3%), water usage (4%) and reactive N 

losses (1%). 

Actions 

needed to 

accelerate 

technology 

roll-out 

Monensin is widely used in feedlots and dairy cattle in jurisdictions where it is approved for use. No additional 

actions are required to promote monensin use in the developed world, primarily due to its large market 

footprint and limited impact on methane emissions, but there is potential to expand its use in the developing 

world. 

Assessment 

Summary 

Antimicrobial rumen modifiers are a mature market, being a strong part of diets for monogastrics (for 

coccidiosis control) and ruminants fed partial or total mixed rations for improved feed efficiency, rumen acidosis 

protection, and reduced bloat risk. All require registration and many are off patent. When monensin is used in 

total mixed rations and supplementary feeds, there is robust evidence with high agreement that it reduces 

methane yield (g/MJ of energy intake) by up to 5% from cattle over sustained feeding periods. There is also 

robust evidence with high agreement that monensin improves feed efficiency in both dairy and beef cattle by 4-

8%. 
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Essential Oil Blends 
Essential oils (EOs) are volatile aromatic compounds produced by plants (herbs and spices) as complex mixtures of secondary 

metabolites. They are not fatty acids but are hydrophobic (water repelling) compounds, usually present in mixtures with 20–60 

components including alcohols, aldehydes, hydrocarbons, ketones, esters and ethers76,77. They are not biologically essential for 

animals but rather, from alchemy times, they were understood to contain the essence (essential components of flavour/aroma) of 

the plant from which they are extracted. 

See the reference list 

Evidence of 

efficacy 

There has been intensive study of key individual EOs (e.g., cinnamaldehyde from cinnamon or allicin from garlic) 

as well as of diverse EO blends, so reporting efficacy of this heterogeneous group of additives is difficult. In a 

review, Cobellis et al.77 concluded “the most consistent results on methane production were observed using EO 

from thyme, oregano, cinnamon, and garlic or their principal components (thymol, carvacrol, cinnamaldehyde, 

and allicin respectively)”. In a meta-analysis of 21 refereed sheep publications, Torres et al.78 found EO did not 

affect feed intake or reduce daily methane production.  

Mode of 

action 

There are multiple mechanisms by which EO may influence methane emissions, but these are not independent, 

and none are robustly evident as reducing CH4 emissions across published literature. 

1) Effects on intake. No significant effects in sheep78, while Corbellis et al.77 found of 18 sheep and cattle 

studies reporting DM intake, only two increased intake and one decreased intake. 

2) Reduced protozoal population. Significant (16%) reduction in populations in sheep over 21 papers78. In a 

meta-analysis, protozoal density was reduced in 19 of 24 treatments in laboratory studies, but only in 4 

of 17 animal studies77. 

3) Reduced methanogen population in the laboratory (19 of 24 treatments) but not strongly in animal 

studies (2 of 17 studies)77. 

4) Changed fermentation pattern. Increased propionate (+0.59% units) and decreased acetate (-1.0% 

units) molar proportions in sheep across 21 studies. But considering cross-species animal studies 

Corbellis et al.77 found only 3 of 23 studies had increased propionate concentration. 
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Dose Agolin: 1 g/d/cow 

Crina Ruminants: 150-200mg/kg bodyweight 

Mootral: 10-15 g/cow/d 

GasoLess: not specified 

Nutrimix: not specified 

Garvo: not specified 

Manufacturer There are numerous commercial EO blends available but currently two major blends are marketed specifically for 

methane reduction.  

Agolin (https://agolin.ch/products/#ruminant). In a meta-analysis of published and unpublished studies of 

Agolin supplementation of dairy cows, at a rate of 1 g/d, Belanche et al.80 reported increased milk yield (3.6%) 

and feed efficiency (4.4%) and an 8.8% reduction in methane production, with no reduction in feed intake. As 

more than half of the studies were apparently on commercial farms and their data used without details being 

available, cautious interpretation of these results is required, as they are not confirmed by other EO literature. 

Mootral (https://mootral.com/) This allicin (from garlic) and citrus extract is specifically marketed for methane 

mitigation. It was shown to reduce methane emissions in sheep81, with preliminary assessments in dairy82 but it 

did not reduce emissions from feedlot cattle32. 

In addition, there is a suite of regionally available essential oil blends, with some listed below: 

Crina (https://www.dsm.com/anh/en_NA/products/solutions/crina.html) This EO blend has not been so well 

assessed for methane inhibition and makes no claims regarding methane but has been adopted as a monensin 

replacement in the EU. 

Gasoless (https://www.idena.fr/en/products-expertise/ruminants/)  

Nutrimix (https://www.idena.fr/en/products-expertise/ruminants/)  

Garvo (https://www.garvo.nl/contact/) 

Availability EOs are available worldwide.  

https://agolin.ch/products/#ruminant
https://mootral.com/
https://www.dsm.com/anh/en_NA/products/solutions/crina.html
https://www.idena.fr/en/products-expertise/ruminants/
https://www.idena.fr/en/products-expertise/ruminants/
https://www.garvo.nl/contact/


Library of ruminant feed additives 

 

36 

Impacts on 

animal 

production 

In only 2 out of 18 studies using a wide range of EO mixtures did Corbellis et al.77 find a significant increase in 

feed intake with EO. Across 11 and 15 studies respectively, Torres et al.78 found diverse mixtures of EO 

significantly reduced growth rate (-10 g/d) and carcass weight (560 g) in sheep. In dairy cows, Hart et al.83 

reported a significant increase in milk yield (without changing milk composition) and a 10% reduction in 

methane emissions with Agolin. In a meta-analysis of Agolin alone, where more than half the studies used were 

unpublished, Belanche et al.80 claimed a similar reduction in methane production (8.8%) and improvement in 

milk yield and feed efficiency of <5%.  

Applicability EOs are transportable so they are widely available, although as indicated, the animal performance and mitigation 

responses are not consistent across products. Essential oils have low chemical stability and high volatility, thus 

there is a concern that exposure to oxygen, light or temperature may reduce their antioxidant and antimicrobial 

capacity. Pelleting may also adversely impact the biological activity of EO.  

EOs in their liquid form can be firstly mixed in with the diet concentrate or in a mineral mix and incorporated 

into the TMR diets of small and large ruminants (dairy and beef). Torrecilhas et al.84 observed that EOs remained 

stable for up to 30 days after inclusion in the diet. Moreover, EO can be microencapsulated (in dry form) leading 

to an extended shelf-life and maintaining the metabolic activity for extended periods85. This technology permits 

EO to be added to mineral or protein/energy supplements that are offered to ruminants in an open environment 

(rain, sun, wind, etc.) without losing efficacy.  

Expected 

market 

trajectory 

The major market opportunity for EO came when monensin was banned in Europe and EO and probiotics entered 

the market as an alternative to this antibiotic, to reduce acidosis and other digestive upsets in ruminants fed 

high-grain diets.  

Expected 

cost 

In Brazil, EO blends are often sold as part of a mineral and vitamin premix (up to 4.5%) of the diet. Cost is 

approximately US$1/kg of this product. 

Mootral has a program of carbon credits from enteric methane reduction from cattle (CowCredit™). CowCredit (1 

CowCredit = 1 t CO2e reduction) can co-finance the cost for Mootral for ruminants via selling the credits on 

voluntary carbon markets and serves as certification for GHG reductions. 
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Constraints 

to use 

The volatility and instability of EO during feed processing and storage may constrain their use. Similarly, the cost 

relative to expected return may also constrain use and this is made worse by the variety of formulations 

available making it difficult to consistently predict economic benefits. There is growing recognition that the 

bioactive compounds in EO may be produced by synthetic chemistry or by biotechnology214, rather than relying 

on extraction from plants which may reduce cost and availability constraints in future. 

Residue in 

animal 

product 

Due to the aromatic properties of EO, there is a concern that essential oils compounds may be incorporated in 

milk and meat resulting in unfavourable organoleptic characteristics. However, some recent sensorial studies 

revealed non-effect84 or higher acceptability of meat from animals fed essential oils86,87. The highly aromatic and 

volatile EO can have negative and positive effects on oxidation and attributes of ruminant meat with Simitzis et 

al.88 finding “oregano essential oil exerted strong antioxidant effects retarding lipid oxidation in the carcass of 

lambs.” Inclusion of garlic in the diet of dairy cows has also been shown to result in off-flavours in milk213.  

Impacts on 

manure 

There is extensive literature on the effects of soil manures and fertilizers on the essential oil content of various 

herbs, but little information on the effects of residual EOs that may be excreted in livestock manures on the 

environment. When added directly to manures, EO are highly effective in suppressing pathogens89, but the 

economic viability of this practice is questionable. As most EO are on the GRAS list, there is little concern with 

regard to adverse environmental effects. 

Potential 

regional 

distribution 

EOs are available worldwide. They are incorporated in diets for their protective properties (antioxidant and 

antimicrobial capacity) and possible effects on animal performance (DMI, feed efficiency, etc.). Several 

commercial EO products make claims as methane mitigators (Agolin and Mootral) which are mainly available in 

Europe and North and South America.  

Regional plants with lower cost may be an alternative to commercialise rather than use of extracted oils (thyme, 

oregano, rosemary, cinnamon, clove, etc.). Studies continue to seek out additional sources of EO from regionally 

produced plant species.  

Life-cycle 

Assessment 

(LCA) 

LCA have been conducted for the extraction of EO from various plant sources90,91, but the impact of EO on the 

carbon economy of ruminant production systems have not been assessed from an LCA perspective. Given the 

diversity of EO, a LCA of their impact on ruminant production would likely need to be EO-specific.  
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Actions 

needed to 

accelerate 

technology 

roll-out 

Farmers are reluctant to adopt new feed additives without evidence of robust economic benefits. For a large 

number of laboratory-based publications, there are relatively few animal studies and even fewer at the scale 

needed to detect a significant reduction in emissions or production of <5%. The primary need is for large, 

properly designed and replicated studies to assess the efficacy of the existing EO blends and their bioactives to 

reduce methane emissions, using appropriate methane measurement methods.  

Assessment 

Summary 

EOs and their blends have been extensively researched in laboratories but far less so in animals. The variability 

across treatments (and product formulations) is high. The most consistent results for methane mitigation were 

observed using thyme, oregano, cinnamon, and garlic or their principal components (thymol, carvacrol, 

cinnamaldehyde, and allicin, respectively)77. There is low agreement and medium evidence of a EO causing a 

low level of mitigation of methane emissions in peer reviewed research conducted in animals. EO efficacy is 

highly dependent on several factors (plant species, harvest time, method of extraction or compound synthesis, 

and dose) making it difficult to compare studies and clearly define effective formulations and dosages. 
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Saponins 
Saponins are a class of plant secondary metabolites with a great diversity of structure and biological activity92. Their chemical 

structure consists of a sugar base (e.g., glucose, galactose, glucuronic acid) linked to a hydrophobic aglycone or sapogenin. The 

biological activity of saponins depends on the nature, number and sequence of the sugars in the structures. The most studied 

saponins in the literature have been sourced from quillaia, tea and yucca plants. 

See the reference list 

Evidence of 

efficacy 

A meta-analysis by Jayanegara et al.93, with 23 laboratory studies that directly measured methane emissions, 

revealed that the addition of increasing levels (up to 500 mg/g of substrate) of a saponin-rich source (quillaia, 

tea or yucca) decreased methane emission per unit of substrate by (7.9%, 13.0%, or 22.3% respectively) as 

well as per unit of total gas produced (9.5%, 13.2%, or 23.3%, respectively). A decrease in acetate proportion 

and an increase in propionate proportion were also observed, while protozoal counts decreased with increasing 

levels of saponins. Ridla et al.94 recently reviewed 17 animal studies and reported a significant 8.6% reduction 

in methane/kg DMI for doses ≤0.5% saponin. Darabighane et al.95 likewise reported a significant (0.85 g 

CH4/kg DMI) reduction in methane yield in sheep, but Honan et al.96 highlighted the variability across studies. If 

reductions in methane are solely related to loss of rumen protozoa from saponin intake, reductions in methane 

may be transient, as increased activity by other members of the methanogen community not associated with 

protozoa may return emissions to pre-treatment levels.  

Mode of 

action 

Saponins are known to be the “natural detergents” with membrane degrading groups that complex with sterols 

in protozoal cell membranes, causing cell lysis. They modify ruminal fermentation largely by suppressing 

ruminal protozoa and selectively inhibiting some bacteria97. However, there is some ambiguity in the literature 

concerning the action of saponins to reduce methanogen populations. Guo et al.98 observed a decreased activity 

of the mcrA gene (an indicator of the methanogenic activity of the methanogen population), without changing 

the total methanogen numbers, while other studies reported that saponins decreased methane emission due to 

a lower relative abundance of methanogens93. 

Dose Inclusion levels of ≤0.5% are recommended for maximum methane mitigation and to avoid adverse impacts on 

digestibility94. 
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Manufacturer There is strong global supply of saponins, with multiple plant extracts generated in Asia where they are used as 

natural pesticides for soil invertebrates and in the US (e.g., www.desertking.com). 

Availability Widely available.  

Impacts on 

animal 

production 

The meta-analysis of Ridla et al.94 showed DM digestibility was increased by a low level of saponin (≤0.5% in 

DM) but reduced at a higher level. 

In the review by Wina et al.99, 3 studies with yucca extracts showed no changes in urea concentration in milk 

and 5 out of 9 studies reported improvements in animal performance (average daily gain) of cattle and sheep 

fed saponins sources, especially when animals were fed high roughage diets. This could be associated with a 

better utilization of N and microbial synthesis due to elimination of rumen protozoa. 

No information regarding the effect of saponin on animal reproduction was found in the literature. 

Applicability Saponin could be incorporated into mineral supplements for farmers in developing countries that adopt 

extensive pasture systems to improve N retention. Saponin extracts could also be incorporated in diets by 

firstly mixing with concentrate and then adding to total mixed rations for more intensive production systems 

(up to 0.5% of the diet) to reduce CH4 emissions and achieve other potential benefits from protozoal 

defaunation. 

Expected 

market 

trajectory 

Yucca and Quillaia saponins are already commercially available products that have been used not only as feed 

additives but for other purposes like foaming and emulsifying agents in beverages and cosmetics. 

Expected 

cost 

A yucca saponin extract powder containing approximately 40% Yucca saponin costs approximately US$26/kg 

saponin. 

Constraints 

to use 

Some plant saponins may be toxic to ruminants, causing photosensitization. This could lead to liver and kidney 

degeneration and gut problems such as gastroenteritis and diarrhoea99. 

Residue in 

animal 

product 

Saponins can be degraded in the rumen to sapogenins, and then excreted in faeces or absorbed in the 

duodenum and transported to the liver where they may be conjugated with glucuronide and excreted in bile. It 

is unlikely that saponins will be found in meat or milk, but even if they are retained, saponins show no or little 

toxicity and do not seem to be of hazard for consumers100. 

http://www.desertking.com/
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Impacts on 

manure 

Saponins have been used to remove heavy metals and hydrophobic organic compounds from contaminated 

soils101 but there is no available literature on effect of dietary saponins on the properties or usefulness (e.g., 

fertilizer, biogas production) of manures.  

Potential 

regional 

distribution 

Saponins can be found worldwide in a large variety of plants and plant tissues, so they can be a part of the 

forage stand during grazing. Extracted saponins, however, are far less common and principally available in the 

Americas and Europe.  

Life-cycle 

Assessment 

(LCA) 

 

No lifecycle analyses for tea, quillaia or yucca appear to have been completed. 

Actions 

needed to 

accelerate 

technology 

roll-out 

The principle uses for extracted plant saponins are in the human health sphere. Given their modest efficacy of 

mitigating enteric methane from ruminants, it would seem unlikely that this would be a market that will grow 

with additional research investment. 

Assessment 

Summary 

Recent review indicates low agreement and medium evidence of saponins causing low to medium mitigation 

of methane emissions in animals, as had been found in the laboratory. Modest doses supporting reduced 

methane production can also improve DM digestibility of supplemented ruminants, and low doses may support 

increased animal growth, but this is highly variable. Saponins are a heterogenous group of compounds with 

diverse biological activities, so any observed benefits are likely to be source specific. 
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Tannins 
Tannins are plant secondary compounds that are rich in phenols and have a strong tendency to bind to proteins, often making 

them unavailable for digestion and absorption. As such they are generally regarded as ‘anti-nutritive’ factors in forages used by 

livestock and the effects of both hydrolysable and condensed tannins have been reviewed102,103. Naturally occurring tannins are 

thought to be the main cause of low methane yields (CH4/kg DM) in legumes such as Lotus spp.104, Leucaena105 and 

Desmanthus106. Condensed tannins are commercially extracted and prepared for tanning leather, and it is these dried tannin 

extracts from acacia species as well as extracted quebracho and chestnut tannins that have been typically evaluated as feed 

additives. 

See the reference list 

Evidence of 

efficacy 

Much of the research on tannins and methane has been based on tannins present in forage rather than tannins 

used as a feed additive, so the evidence is differentiated on this basis below (innate forage vs added extracted 

tannins). 

Tannins in the main diet or forage: Jayanegara et al.107, in an analysis of 15 experiments (11 of them with 

tannin of non-extract form) with 41 comparisons found a weakly negative linear relationship between methane 

yield and dietary tannin level (g/kg DM), such for every 1% tannin in the diet, MY declined by approximately 

0.8 g CH4/kgDMI. Patra and Saxena108 ascribed this to (1) reduced carbohydrate fermentation in the rumen, (2) 

a direct toxic action on methanogens, and (3) a direct suppressive effect on protozoa. 

In a meta-analysis of six rumen simulation technique (RUSITEC) experiments, Jayanegara et al.109 found that 

methane emission decreased linearly with increasing level of dietary tannin due to a reduction in digestibility of 

nutrients (especially fibre) and inhibition of methanogens. 

Tannin extracts: Aboagye & Beauchemin102 found reduced MY in 7 of 9 animal studies, largely based on 

feeding tannin extracts. Meta-analysis of cattle data by Orzuna-Orzuna et al.110, with up to 32 cattle 

comparisons in which 26 of them used tannin extracts, observed a reduction in the concentration of ammonia 

nitrogen in the rumen (5.9%), urinary N excretion (3.0%), and dry matter digestibility (4.5%), without 
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affecting animal performance. Methane yield was measured in 10 studies and methane emission/kg DMI was 

reduced by 5.9%, with the effect increasing in animals fed tannins for longer periods. 

There is a commercially available tannin extract (Silvafeed) with some documented emission and productivity 

responses: 

● Methane production of sheep expressed in g/kg DM intake was reduced by 12%, 30% and 19% for 

Silvafeed, crude Acacia tannin extract and encapsulated Acacia tannin extract, respectively111. 

● Silvafeed at 30 g/ kg of DM reduced (6%) total CH4 production (24 h) but increased (5%) production of 

CH4 per g of degraded DM. These results suggest that these tannins affected CH4 mainly by decreasing 

fibre digestibility112. 

● Silvafeed (67 mg/L of inoculum) had no effect on gas production and methane production in the 

laboratory113. 

Mode of 

action 

Tannins bind strongly to proteins in the rumen and this is the main reason they reduce proteolysis in the rumen 

and increase protein outflow to the abomasum and intestine108. Exact mechanisms of mitigating enteric 

methane are likely to vary with tannin source but may include direct inhibition of methanogens, inhibition of 

protozoa, binding to polysaccharides as well as proteins, and an increase in propionate production114. 

Dose Tannins are not uniform but Jayanegara et al.107 found most animal studies used <40 g/kg DM. Higher doses 

can inhibit feed intake and DM digestibility. 

Manufacturer Global producers exist for tannins, principally marketed to preserve skins and hides as ‘veg-tan’ hides. Products 

specifically produced for feed applications are made, but none have a claim for reduced methane production. 

Silvafeed is a commercial additive composed of a mixture (60:40) of hydrolysed tannin from chestnut 

(Castanea sativa Mill) and condensed tannin from quebracho (Schinopsis lorentzii Engl) produced by SilvaTeam. 

This limited supply of dietary tannin extracts contrasts with a very strong research and commercial interest and 

investment in evaluating and developing tanniniferous shrubs and forages, especially legumes115 

(https://www.progardes.com.au/research) 

https://www.silvateam.com/en/
https://www.silvateam.com/en/
https://www.progardes.com.au/research
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 Impacts on 

animal 

production  

The meta-analysis of cattle studies by Orzuna-Orzuna et al.110 summarized the following effects in cattle based 

on up to 32 peer reviewed publications. 

Animal Performance: Feed intake, cattle growth rate and final liveweight were unaffected by tannins. 

Feed Digestibility:Reduced feed digestibility at doses above 12 g/kg DM110, and a tendency for reduced feed 

efficiency. 

Nitrogen Utilization: An intake of below 50 g condensed tannin/kg DM may contribute to greater amino acid 

absorption. For animals with higher protein requirements (capable of responding to an increase of dietary 

protein) forages containing condensed tannins had the potential to increase average daily gain by 8 to 38%, 

and milk production by 10 to 21%116. Tannin supplementation has reduced ruminal N concentration but did not 

affect the efficiency of nitrogen use110. 

Environment: Tannin supplementation reduced N excretion in urine and increased N in faeces. The shift from 

urinary to faecal N may be beneficial from an environmental perspective, as urinary N is volatilized to ammonia 

which can lower air quality, whereas slower release faecal N is more likely to contribute to soil health114. 

Animal Health: Tannin extracts have the potential to reduce bloat incidence117. Bloat is caused by very high 

solubility of forage proteins which produce stable foam in the rumen that traps rumen gases. Concentrations >5 

g/kg of condensed tannins in DM is needed to make forages bloat-safe118. 

Applicability  Tannins can be consumed naturally as ingredients in forages or added to prepared feeds and supplements as 

extracts mixed into the diet. 

Expected 

market 

trajectory  

The market trajectory for tannin-rich forages and browse species is strong but the prospects for delivery of 

extracted tannins in supplementary feed is weak due to the astringency of the tannins and lack of supply. 

Expected 

cost  

Tannin extracts cost US$3-4/kg for a product that is approximately 95%DM and 60-70% tannin in DM.  

Silvafeed in Brazil is marketed to the feed industry and farmers in packages of 25 kg to be mixed into the diet 

(0.03-0.08% of DMI) with cost around US$3/kg of additive. 
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Constraints 

to use 

Kumar and Singh119 document the constraints of tannins in natural feedstuffs, including (1) reduction in feed 

intake if >2% in forage, and (2) reduction in digestibility. Therefore, while rumen protection of proteins may 

enhance productivity in protein-deficient grazing situations and stimulate animal performance, effects are likely 

to be minimal with protein rich diets. Depending on the species, tannin-rich forages may also be difficult to 

establish and have yields that are lower in some environments than some alternative forages. 

Further, if tannins are provided as an additive in dietary supplements, they will need to be in a high 

concentration in the supplement and their high astringency may render the supplement unpalatable. 

Residue in 

animal 

product  

As tannins are high molecular weight complex molecules that are largely undegradable and not absorbed from 

the digestive tract, they are unlikely to generate residues in either meat or milk.  

Impacts on 

manure 

While diversity in tannin effects on feed digestion have been summarised above, in general tannins reduce the 

proportion of N excreted in urine120 and increase N excretion in faeces. The presence of the tannin in faeces has 

a persistent effect and reduces the overall greenhouse gas emissions from the manure (CO2, N2O, CH4)121. 

However, this effect may be lost over time as there was no difference in total gas or methane production over 

90 d in bench scale incubations122. 

Potential 

regional 

distribution  

As tannins are most common in the forages and browses of tropical countries, they are widely accessible. 

Similarly, extracted tannins for tanning hides are globally available, although that does not mean they can 

legally be used in supplements or TMR. Their approval as a feed additive depends on the requirements of the 

regulatory agencies in each jurisdiction.  

To the best of our knowledge there is only one commercially available tannin extract in the market for animal 

use. SilvaTeam is an Italian company, with factories located in Argentina, Brazil, Peru, USA, and China, and 

reputedly currently sells product in over 60 countries.  

Life-cycle 

Assessment 

(LCA) 

Life cycle assessment of different tannin extraction methods from spruce bark revealed that the evaporation 

process is the primary contributor to the environmental impact of tannin production. The use of preliminary 

cold-water extraction or multiple extractions can result in a higher tannin yield but has higher environmental 
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impact than a single hot water extraction123. A LCA from the perspective of the impacts of tannins on ruminant 

production has not been conducted. 

Actions 

needed to 

accelerate 

technology 

roll-out 

Given the low efficacy of tannins at reducing methane emissions and associated negative effects on dry matter 

digestibility (DMD), the co-benefit of altering nitrogen utilization and generally reducing urinary N excretion 

may offer motivation for tannin inclusion. There are also strong reasons for promoting tannin containing, 

nitrogen fixing legumes in the pasture/browse available to livestock grazing or fed with cut and carry systems. 

The combination of tannin and additional nitrogen may enhance forage yield and animal performance, and 

lower emissions/unit animal product.  

Assessment 

Summary 

Much of the data for tannins come from tannins eaten in forages, not provided as a feed additive. When fed as 

additives to animals there is medium agreement and medium evidence that dietary tannins result in a low 

reduction in CH4 yield in ruminants, both directly by inhibiting methanogen growth, and indirectly by decreasing 

nutrient digestibility. Mean reduction in methane yield (5.9%) is less than the reduction in total methane output 

(9.9%) because tannin additives reduce DM intake, but scale of effect is very dependent on tannin source. 

Thus, there is low agreement that these effects will result in improvements of animal performance and feed 

efficiency, but high agreement that tannins shift nitrogen excretion from urine to faeces that may affect manure 

GHG emissions. 
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Microalgae 
Microalgae have been principally evaluated as a renewable biomass substrate for producing algal oils for biodiesel or for gasification 

to methane in biodigesters124,125. They are valued for nutrient removal from wastewater and so contribute to the vision of cyclical 

agriculture. Microalgae, such as Chlorella spp., are likely to require cell disruption or solubilization before use as feedstock, and this 

has limited their use in biogas production126. Microalgaes have been evaluated as substrates for fermentation and biogas 

production127,128, but more recently their potential as feed additives to provide protein129 and suppress methane in ruminants has 

been assessed130. 

See the reference list 

Evidence of 

efficacy 

McCauley et al.130 concluded that the “effects of microalgae as a ruminant feed supplement on CH4 production 

and other fermentation parameters have not been fully understood or investigated”. Kiani et al.131 found no effect 

of three microalgae on methane production in the laboratory, despite a general suppression in fermentation. To 

date, no microalgal species has been found to mitigate CH4 in a manner similar to the red macroalgae, 

Asparagopsis. Among the few animal-feeding studies where microalgae or docosahexaenoic acid (DHA, an algal 

metabolite) has been fed to animals, as opposed to laboratory studies, Moate et al.132 and Klop et al.133 found no 

effect on methane production. 

Mode of 

action 

While the long chained fatty acid, DHA, has been proposed as an anti-methanogenic component of microalgae 

through its biohydrogenation134 and potential direct effects on ruminal CH4 production, McCauley et al.130 

concluded that they do not always reduce emissions. Other bioactives may also play a role in CH4 mitigation as 

lipid-free microalgae extracts have also been shown to suppress emissions. Freshwater microalgae typically have 

less or lack the bromoforms associated with marine red macroalgae. Where reductions in CH4 emissions are seen, 

they are likely most often attributable to the high lipid content of some microalgae species. 

Dose The inclusion level of microalgae in the diet depends on whether the product is fat extracted or is sold ‘as grown’, 

and whether it is blended with other non-algal components in a premix. High levels of microalgae in the diet can 

suppress feed intake in ruminants. 
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Manufacturer Algal meals are available and are now being used as source of omega three fatty acids for farmed fish.  

Availability DHA in a purified form is readily available as nutraceutical & algal extracts are available. 

Impacts on 

animal 

production 

Algal meals have primarily been evaluated as a protein source and as a source of DHA. Altomonte et al.135, in 

reviewing effects on milk quality, found in most cases there was no effect on milk volume (13 of 16 studies) or 

protein content (11 of 15 studies), with diverse effects on milk fat level. The primary response is an increase in 

polyunsaturated fatty acids, particularly omega-3 fatty acids in milk. Regarding liveweight gain, a review shows 

little evidence of improved production from inclusion of microalgae in the diet136, although it has been shown to 

increase the omega-3 fatty acid content of meat. 

Applicability While microalgae were expected to be a major protein source for humanity and are currently used as a protein 

and fatty acid source in fish-farming, to date there is no ruminant feeding application that would warrant their 

use to mitigate CH4 emissions. Other feeds such as flaxseed or rumen protected omega-3 fatty acids are more 

commonly used as a means of increasing the omega-3 fatty acid content of milk and meat.  

Expected 

market 

trajectory 

 

Algal meal availability will depend on whether microalgae develop as a feedstock for renewable energy. 

Expected 

cost 

Both algal meal and algal derived DHA are available for approximately US$20/kg in bulk 

Constraints 

to use 

Supply and few demonstrated improvements in production efficiency limits the use of microalgae as a ruminant 

feed. Nutritional strengths and constraints of algal nutrients in monogastric diets have been reviewed137. 

Residue in 

animal 

product 

Microalgae have been developed for heavy metal removal from contaminated environments138. Therefore, there is 

a risk they could accumulate heavy metals during culture, although they are principally grown in controlled 

aquatic environments that avoid heavy metals in culture systems. The lack of heavy metals or biotoxins would 

need to be confirmed in microalgae that was not grown under controlled culture conditions. As suppliers of PUFA, 

microalgae will affect the fatty acid profile of milk and meat. 

https://www.dsm.com/corporate/markets/animal-feed/replacing-fish-with-algae-with-veramaris.html
https://www.pondtech.com/algae-products
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Impacts on 

manure 

Like the macroalgae Asparagopsis, microalgae have been used as fertiliser46,139 and their biochar as a soil 

conditioner. Increasingly, microalgae biomass is seen as playing a key role in future bioenergy production and as 

part of circular agricultural systems140. 

Potential 

regional 

distribution 

The greatest growth in the microalgae industry will occur as result of their use as a 3rd generation bioenergy 

source and any livestock use will depend on this industry development. 

Life-cycle 

Assessment 

(LCA) 

Microalgae LCAs are primarily based on their use in bioenergy, and depending on species and growing conditions 

they can be used as a renewable substitute for fossil fuels to lower the carbon footprint141. 

Actions 

needed to 

accelerate 

technology 

roll-out 

A very low mitigation efficacy places microalgae at a competitive disadvantage relative to Asparagopsis and no 

immediate development of a microalgae product for methane mitigation is apparent. However, if microalgae are 

grown for carbon capture and for bioenergy production, greater supply may increase their direct use or use of 

associated by-products as livestock feed.  

Assessment 

Summary 

Microalgae meals are available in raw or defatted form and in pure or diluted forms. Their key nutritional 

metabolites (PUFAs) are also available as extracts.  

Generically, microalgae studies have shown there is little evidence and little agreement that microalgae offer 

even a low level of sustained methane mitigation. Correspondingly there is little evidence and little agreement 

that adding microalgae into a balanced dairy diet will increase milk production. Consequently, while individual 

algal bioactives may yet prove to mitigate methane emissions, there is currently no basis to recommend 

microalgae as a means of mitigating methane. 
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Biochar 
Biochar is a carbon based (charcoal-like) product arising from combustion in an O2 depleted environment (pyrolysis) of purpose-

grown or waste vegetation. Its production can generate syngas and heat as co-products and it is finding wide application in 

agriculture, both as a long-term stable carbon store and as a soil ameliorant142. In livestock feeding biochars have been used to 

adsorb toxins and alter manures143. Biochar has also been shown to facilitate methane oxidation (destruction) in soils144, largely 

where soils become aerobic, but anaerobic methane oxidation has been hypothesized to occur in the biofilms in the rumen145,146. 

However, it is a minor process in the rumen147 and requires another electron receiver (such as sulphate) to be present. 

See the reference list 

Evidence of 

efficacy 

There is only limited evidence that biochars affect rumen methane production with partial data to 2018 

collated by Schmidt et al.143. Effects on methane are not consistent across trials or chars148,149. Recently the 

need to acidify chars for improved methane mitigation has been found150 but little data on acidified chars is 

available and initial results show no advantage215. Biochars can affect the rumen biome in batch151 and 

continuous culture152, but these studies and others across a range of biochars have found no effect on 

methane emissions153 and a further 6 chars showed no effect on methane as % of gas produced149. In animal 

studies, methane production has shown inconsistent response154, and for these reasons Black et al.34 ascribed 

0% mitigation to biochar in Australia. 

Mode of action Given that mitigation is small and sporadic it is hard to ascribe a mechanism to the mitigation. If mitigation 

occurs it is likely to reflect changes in one or more of the following:  

1) reduced rumen protozoa populations151 

2) the pore structure of the biochar allowing a different microbial biome (ib-id) and  

3) the biochar acting as an electron shuttle moving electrons between microbes or between microbes and 

chemical acceptors155  

Dose 0.5 – 1.0% in feed DM. Intake has been suppressed at 1.5% biochar156 in cattle. 

Manufacturer Biochars can be generated from 1st (crop based), 2nd (crop waste based) or 3rd generation (algal based) 

feedstocks. There are over 130 biochar producers in the USA but the majority of global production occurs in 

China155. 
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Availability Industrial scale agronomic use in China but only pilot scale usage in most of world, and it is not routinely used 

as a feed additive in ruminants. 

Impacts on 

animal 

production 

The traditional roles of biochar in animal feeds is for adsorption of mycotoxins, pollutants, heavy metals and 

the management of ammonia and ion loss from manures; these impacts are summarized in reviews143,146. 

There are direct production benefits when such anti-nutritional factors are in the diet (e.g., tannins). When 

toxins are not a factor there are some studies in high-tannin tropical diets, where growth rate was improved. 

Applicability As shelf-stable products, biochars would readily fit into supplementation programs. However, chars specifically 

treated to provide methane inhibiting activity will be required and these have yet to be developed. 

Expected 

market 

trajectory 

Biochar production will be principally driven by the biofuels industry and a role in soil amelioration. Global 

production is approaching 500,000 t/y with China currently the largest producer, and other countries yielding 

<50,000 t157,158. To be widely effective in enteric methane mitigation, chars will need to be custom made with 

acidification and probably nanoparticle inclusions. Appropriate feedstock availability could also influence 

market development. 

Expected cost Non-treated char is currently available for approximately US$1000/t155. However, this is when capacity to 

supply is very low, so lower prices can be expected as supply increases and supply of specialist chars also 

becomes feasible. 

Constraints to 

use 

1) Low efficacy in mitigation by available untreated chars 

2) Limited supply in most countries 

3) Need for specialist treatment and preparation for methane efficacy 

4) Can be difficult to handle within mechanized feeding systems 

Residue in 

animal 

product 

Dietary biochar has been seen as a way of preventing toxins being absorbed by livestock, as the toxins are 

trapped on the biochar and excreted in manure. Reduced bioavailability of heavy metals in biochar treated 

soils may well also offer protection from heavy metal absorption by plants and the same may apply in animals 

(research needed). Care should be taken to not bring heavy metals into diets in biochars produced from plants 

grown on contaminated land. Similarly, marine algae should be checked for high levels of salts (sodium, 
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iodine) and bromine if used as biochar feedstock. European standards for feed grade biochar are set by the 

European Biochar Certificate Standard (https://www.european-biochar.org/en/certificate). 

Impacts on 

manure 

The principal biochar market is as a soil ameliorant or additive in high value crops142. There are no indications 

of any adverse effects but there are many positive effects of biochar on soil physical properties and biology. 

While only small quantities will be fed to livestock, this is seen as a means of distributing biochar via faeces 

and thereby improving soil fertility143. At higher doses than would occur in manure from biochar fed cattle, 

manure has shown increased gas production in a simulated biogas system when biochar was present159. 

Biochar also affects the redox state of the soil to which it is applied158. 

Potential 

regional 

distribution 

China is the main global production site157, but biochar is a transportable bulk commodity and can be 

produced wherever plant waste is available. 

Life-cycle 

assessment 

(LCA) 

Biochars are part of the bioenergy system and increasingly seen to have advantage in adsorption of 

undesirable organics and metals from the environment. Ibarrola et al.160 assessed a range of pyrolysis 

mechanisms for virgin feedstock and showed all processes lead to emissions abatement, so some of that 

abatement can rightly be attributed to the biochar arising, among other co-products. 

Actions needed 

to accelerate 

technology 

roll-out 

Research and development of biochar preparation to deliver a char supporting consistent methane mitigation 

is required. More research could be conducted by evaluating various feedstock sources. Reliance on crude 

pyrolysis products that have not been acidified or treated is unlikely to be a solution to lowering livestock 

methane emissions. 

Assessment 

Summary 

Biochars are a highly heterogeneous group of pyrolysis products, and this contributes to difficulty drawing a 

consistent assessment of efficacy in enteric methane abatement. Currently there is a low evidence, based 

largely on in laboratory incubations, which provide low agreement that currently available biochars deliver 

even a low (<5%) level of rumen methane mitigation. A treated acidic biochar may be specifically developed 

for methanogenesis but does not yet exist. Biochars may also be considered in animal feeds for heavy 

metal/toxin management, as a means of distributing biochar over the landscape as a soil ameliorant, and as 

part of a circular agricultural enterprise. 

  

https://www.european-biochar.org/en/certificate
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Bacterial DFM   
Direct-fed microbials (DFM) are products that contain live (viable) microorganisms including bacteria and/or fungus. Bacterial DFM 

are most often composed of propionate-forming bacteria (especially Propionibacterium spp.) and lactic acid producing bacteria 

(LAB) from a range of genera. The primary goal of bacterial DFMs is to enhance animal health and improve feed efficiency in 

ruminants. Very few DFMs have been assessed specifically for their ability to lower enteric methane emissions. Other less common 

bacterial DFMs that could specifically alter hydrogen flow in the rumen such as homoacetogens (Acetitomaculum ruminis, 

Eubacterium limosum, Ruminococcus productus), fumarate-reducing bacteria (Enterococcus faecalis, Mitsuokella jalaludinii) and 

nitrate/nitrite-reducing bacteria (Denitrobacterium detoxificans, Propionibacterium acidipropionici, W. succinogenes, S. 

ruminantium, V. parvula) have been assessed for their ability to lower methane emission mainly in the laboratory, with few studies 

in animals. Only those bacterial DFMs that have been specifically assessed in animals will be discussed further. 

See the reference list 

Evidence of 

efficacy 

Propionibacteria: The effect of various species of propionibacteria on ruminants has been studied for more 

than 20 years, with the majority of the research focusing on growth and feed efficiency. Although laboratory 

incubations of various Propionibacterium strains have been shown to reduce CH4 production, research in 

animals is limited. Among 31 animal studies reported in the literature in the last 20 years, only 6 assessed the 

effects of propionibacteria on enteric methane emissions. These studies involved different strains (P. 

acidipropionici P169, P. acidipropionici P5, P. jensenii P54, P. freudenreichii T114, P. thoenii T159, P. 

freudenreichii T54, P. freudenreichii 53-W), different hosts (beef cattle, dairy cow and sheep), and fed 

different diets (high forage, high concentrate). The dosage of bacteria provided ranged from 5 x 109 – 11.5 x 

1011 CFU/head/d. None of these studies found that propionibacteria reduced enteric methane production. In 

contrast, Jeyanathan et al.161 reported that P. freudenreichii 53-W actually increased the intensity of CH4 by 

27% (g CH4/kg milk) in cows fed a high starch diet. Similarly, Vyas et al.162 also showed that supplementation 

of P. freudenreichii T114, P. thoenii T159, P. freudenreichii T54 to beef cattle fed a high forage diet tended to 

increase methane yield per unit of DM or GE intake. The limited information obtained so far suggests that 

despite the ability of propionibacteria to produce propionate as a hydrogen sink during fermentation, it does 

not lower enteric CH4 emissions.  



Library of ruminant feed additives 

 

54 

Lactic acid producing bacteria (LAB): Information on the efficacy of LAB on enteric methane production is 

very limited. Only 5 research publications evaluated various strains as either DFM or as silage inoculants on 

enteric methane production from dairy cows or sheep. Jeyanathan et al.161 showed that L. pentosus D31 (3.6 

× 1011 CFU/cow/day) and L. bulgaricus D1 (4.6 × 1010 CFU/cow/day) did not affect CH4 emission from cows 

fed either high starch or high fibre diets. Ellis et al.163 reported that L. plantarum (6072), L. lactis (O-224), L. 

buchneri (LB1819), L. lactis (SR3.54) as silage inoculants (1.5 × 105 CFU/g of grass) or supplemented 16 h 

before morning feeding (5 × 109 CFU/cow/day) did not affect CH4 emission regardless of the unit of 

expression, but tended to increase CH4 produced per unit of metabolic BW. Philippeau et al.164 examined 

combinations of Propionibacterium P63 with L. plantarum 115 or with L. rhamnosus 32 administered at 1010 

CFU/d on methane production of dairy cows fed either high- or low-starch diets. Cows fed low starch diet with 

P63+ L. rhamnosus 32 tended to have decreased CH4 emissions when expressed per kilogram of milk or 4% 

fat-corrected milk, but P63 alone did not. However, Cao et al.165 found that compared to sheep fed 

unfermented TMR, sheep fed fermented TMR together with L. plantarum Chikuso-1 had lower daily methane 

emissions and energy losses resulting from increased conversion of lactic acid to propionic acid in the rumen. 

Mwenya et al.166 assessed the effect of feeding Leuconostoc mesenteroides subsp. Mesenteroides (AOK1789) 

to sheep at 1.5–1.8 × 109 CFU/head/d and found no effect on methane emissions. In general, to date, 

bacterial DFMs have failed to reduce enteric methane emissions. Further development of acetogenic or 

methanotrophic DFMs may offer future possibilities as they have the potential to directly impact hydrogen flow 

and the half-life of CH4 in the rumen.  

Mode of action In general, the potential mode of action by which DFM favourably alter feed digestibility includes altering 

ruminal acid production, establishing desirable microflora, and increasing fibre digestion167. The mode of 

action of DFM depends on many factors, such as dosage, feeding times and frequencies, diet, and strains of 

DFM. Some DFMs act within the rumen while others impact the lower gastrointestinal tract. However, 

mechanisms by which bacterial DFM may alter enteric methane production are unclear. Results from 

laboratory incubations and limited animal research offer the following potential explanations: 

Propionibacteria: 
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1). Propionibacteria are natural propionate producers in the rumen and convert carbohydrates to propionic 

acid, leading to increased propionic acid concentration in the rumen. Propionate is a H sink in the rumen and 

its production can reduce the availability of H for the reduction of CO2 to CH4 by methanogens. Indeed, some 

researchers have shown increased ruminal propionate with Propionibacterium P169 in cattle168,169. 

2). Another possibility for the lower intensity of CH4 emissions could be the antimicrobial activity of some 

Propionibacterium strains, which produce inhibitory metabolites such as short-chain fatty acids and 

antimicrobial peptides known as bacteriocins. It has been shown some strains of Propionibacterium have 

inhibitory activity against ruminal bacteria, thus reducing CH4 and total gas production in the laboratory170,171. 

However, this response could reflect an overall reduction in fermentation and to date it has not been shown 

that propionibacteria produce inhibitors that are specific to rumen methanogens. 

Lactic acid producing bacteria (LAB): Doyle et al.172 summarized the possible mechanisms by which LAB 

decreased methane production in ruminants:  

1). Addition of LAB may stimulate the production of lactic acid and the growth of lactic utilizing bacteria that 

convert lactic acid to propionate173. 

2). Metabolites such as bacteriocins (e.g., nisin from Lactococcus lactis, PRA1 from L. plantarum TUA1490L 

and pediocin produced by P. pentosaceus 34) may inhibit the growth of hydrogen producing microorganisms 

and thereby reduce substrate availability to methanogens. However, if these mechanisms exist, they have yet 

to be elucidated.  

Dose DFMs are typically administered directly through the diet. Some preparations may be encapsulated so as to 

promote their passage through the rumen to the lower digestive tract. Most preparations are administered at 

rates ranging from 1 x 106 – 1 x 1012 CFU/head/d. LAB are also extensively used as silage inoculants. 

Manufacturer International and local manufacturers. 

Availability Commercial products are readily available globally, but are registered for improvements in feed efficiency, not 

for reduction in enteric CH4 emissions. 
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Impacts on 

animal 

production 

The impact of bacterial DFMs on ruminant growth and feed efficiency has been recently reviewed172,174,175. In 

general, effects of bacterial DFMs on animal performance are inconsistent, a response attributable to 

differences among strains, strain viability, dosage, diet composition and host genetic and physiological traits.  

Propionibacteria: Azzaz et al.175 reviewed 26 reports on the use of propionibacteria strains in ruminants, 

showing 3 with increased, 4 with decreased and 19 with no effect on feed intake. Similarly, among the 12 

publications assessing effect of propionibacteria on milk production, only 3 that used a combination of 

propionibacteria and LAB or yeast resulted in increased milk production, with the remaining 9 having no 

effect. Three reports showed no effect on body weight gain, but one showed increased wool production in 

sheep. Similar trends were also found for the effect of LAB on feed intake and animal performance.  

LAB: Doyle et al.172 generated a critical review on the use of LAB in ruminants. Meta-analysis of LAB 

supplementation in young calves has shown that LAB can exert a protective effect and reduce the incidence of 

diarrhoea and improve weight gain and efficiency176 when one particular strain was administered in whole milk 

or as an inoculum177. When LAB were administered to mature ruminants, the prevalence of Escherichia coli 

O157 in beef cattle was reduced178, suggesting that some DFM may promote food safety. LAB DFMs have also 

been shown to reduce the risk of ruminal acidosis in some instances179,180. Milk production was increased in 2 

out of 8 studies and the remaining 6 were not affected by various LAB strains. The reported two studies 

involving beef cattle showed increased growth in one study whilst there was no effect in another. 

Often, propionibacteria and LAB were mixed within DFMs and occasionally even yeasts are included in the 

product. Consequently, it is difficult to separate observed responses and attribute them to any single 

component within mixed products.  

Applicability Readily delivered either through direct inclusion in feed or through silage. Occasionally, also administered to 

individual animals in the form of a bolus.  

Expected 

market 

trajectory 

Products are already available on the market, depending on the organism. If a successful DFM mitigant could 

be identified, commercialization, regulatory requirements, production, distribution and adoption streams could 

already be in place.  
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Expected cost Bacterial direct-fed microbials typically range in price from US$0.05-0.25 per head per day. Cost depends on 

fermentation conditions, cell yield and product stability. 

Constraints to 

use 

Easiest if dealing with microorganism on GRAS list. Other microbial candidates would have to be submitted 

through the appropriate regulatory pathways. 

Lack of DFMs that have proven efficacy in terms of CH4 mitigation. 

Residue in 

animal 

product 

No concerns over residues in animal products. Increasing requirement for bacterial DFM to be genetically 

sequenced and assessed for undesirable genes that may be associated with factors such a virulence or 

antimicrobial resistance. Bacterial species with pathogenic properties are deemed unsuitable as DFMs.  

Impacts on 

manure 

The main role of DFM in manure properties has been the frequent (but not consistent) reduction in the level of 

pathogens (Escherichia coli and Salmonella strains) as summarised by McAllister et al.167. Changes in the 

quantity of manure produced (reflecting DM Digestibility) and composition are small and variable.  

Potential 

regional 

distribution 

Global distribution. 

Life-cycle 

Assessment 

(LCA) 

An LCA of probiotics used in fish farming showed a modest carbon cost (1,153kg CO2e/ batch), with 90-97% 

of the energy cost coming from the lyophilization of the product, so a similar cost could be assumed for 

ruminant probiotics181. As no bacterial DFM with clear mitigation responses have been identified, LCA from the 

perspective or ruminant production systems have not been conducted. 

Actions needed 

to accelerate 

technology 

roll-out 

More work is needed to identify bacterial DFMs that clearly result in a reduction in methane emissions. The 

persistence of effective strains within the ruminant environment also requires investigation.  

Assessment 

Summary 

Bacterial direct fed microbials are increasingly being included in high grain diets to reduce the risk of lactic 

acidosis in the absence of antibiotic rumen modifiers. There is low evidence from animal studies, and low 

agreement that bacterial DFM will mitigate enteric methane production by up to 5%. There is also medium 

evidence and medium agreement that bacterial DFM can have positive effects on animal health. 
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Fungal DFM 
Fungal DFM mainly consist of Saccharomyces cerevisiae (yeast) and Aspergillus oryzae, with S. cerevisiae being the most common 

for ruminants. Other fungi including Trichosporom sericeum, S. lipolytica, A. terreus and A. niger have also been explored, but to a 

far lesser extent.  

See the reference list 

Evidence of 

efficacy 

Darabighane et al.182, conducted a meta-analysis to assess the impact of S. cerevisiae on methane production 

in dairy and beef cattle. The fact there were only 7 papers published between 1990 and 2016 reflects the lack 

of data. Using three datasets (all cattle, dairy cattle, or beef cattle) they concluded that yeast did not affect 

either daily CH4 production or CH4 production per dry matter intake (CH4/DMI). Since 2017, one study showed 

that S. cerevisiae CNCM I-1077, at a dosage of 1 x 1010 CFU/head/d, tended to increase CH4 per unit of feed 

intake in lactating dairy cows . In another study, S. cerevisiae supplemented at 2, 4 and 6 x 1010 CFU/head/d 

also did not affect CH4 production regardless of whether it was expressed as grams per day or per unit of milk 

yield, dry matter intake, digested organic matter, or digested non-fibre carbohydrate184. Similarly, Oh et al.185 

reported that supplementation of a DFM product containing S. cerevisiae (5 x 1010 CFU/head/d and 1.1 × 108 

CFU/g of a mixture (3 x 109 CFU/head/d) of L. lactis, Bacillus subtilis, E. faecium, and L. casei had no effect on 

enteric methane production, yield (methane per kg of dry matter intake, DMI), or emissions intensity 

(methane per kg of energy-corrected milk yield). Furthermore, Meller et al.186 supplemented S. cerevisiae 

(from Yea-Sacc 1026) at a dose of 5 x 109 CFU/head/d to lactating Jersey cows and found no effect on CH4 

production when the diet contained either urea or NO3
− . In contrast, Cagle et al.187 showed that 

supplementing S. cerevisiae Sc47 CNCM I-4407 at the levels of 2.5, 5 and 10 x 1010 CFU/head/d to steers and 

heifers fed a growing, transition and finishing diet decreased CH4 only when it was administered at the highest 

level in a grower diet. Research to date has failed to show that fungal based DFMs result in a predictable 

reduction in enteric methane emissions.  

Mode of 

action 

Proposed modes of action for fungal DFM include: 

• Reduction of oxygen in the rumen 
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• Prevention of excess lactic acid in the rumen 

• Provision of growth factors such as organic acid and vitamin B 

• Increase of rumen microbial activity and numbers 

• Improved balance of ruminal end products (e.g., VFA, rumen microbial protein) 

• Increase of ruminal DM digestibility 

• No clearly defined mechanism in terms of reducing enteric CH4 emissions. 

The most commonly reported mode of action of S. cerevisiae is the creation of a more anaerobic and stable 

environment, which promotes the growth of two key classes of ruminal bacteria: fibrolytic and lactate-utilizing 

bacteria. The increase in lactate-utilizing bacteria leads to the stabilization of pH, prevention of lactate 

accumulation and an increase in VFA production. Live yeast may also be able to metabolize the lactate itself, 

further decreasing the concentration within the rumen and enhancing its effects. However, these responses 

have not been linked to a consistent reduction in ruminal CH4 production. 

Dose Fungal DFMs are administered in the diet at rates ranging 108-1011/head/d depending on strains, animal, diet, 

etc. Most commonly they are administered at 109-1010 CFU/head/d. 

Manufacturer International and local manufacturers. 

Availability Commercial products are readily available globally, but are registered for improvements in feed efficiency, not 

for reduction in enteric CH4 emissions.  

Impacts on 

animal 

production 

Numerous reviews have been published in the last 20 years to document the effects of fungal microbial 

products on animal productivity, in particular the use of yeast (S. cerevisiae) in dairy cattle167,188–194. In 

general, fairly consistent positive effects of yeast on milk production and composition have been found in 

lactating dairy cows. In a review of 32 lactation studies conducted between 1986 and 1997, supplementation 

with yeast increased milk production on average by more than 1.1 kg per day with the response being greater 

for cows in early lactation188. An average increase in milk production of 0.45 kg of milk per day was also 

documented by summarizing 26 comparisons where fungal extracts from A. oryzae were fed to lactating 

ruminants188. In a review by Robinson and Erasmus190, yeasts increased milk yield by 3.6% on average.  
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Fungal cultures have also been fed to calves, sheep, and steers but studies with these livestock are far fewer 

than with lactating dairy cows. Sales191 conducted a meta-analysis and the results revealed that yeast did not 

have any effect on growth, feed conversion, ruminal parameters or fibre digestibility in sheep. 

Sartori et al.195 conducted meta-analysis on data from 12 publications reporting 22 trials about the effect of 

live yeast supplementation on beef cattle performance prior to 2014. The results showed that yeast increased 

ADG when the forage level in the diet was between 30 and 50% but decreased it when the forage level range 

from 51 to 75%. When the diet contained 60% NDF, the use of yeast decreased the ADG by 407 g/day. 

Overall, supplementation with S. cerevisiae in the diet of beef cattle decreased DMI, had no effect on ADG, but 

improved feed conversion due to the reduction in DMI. However, two recent reports found that supplemented 

live S. cerevisiae to beef cattle (4.9 x 1012/head/d) did not affect DMI, ADG or feed efficiency196, and that beef 

cattle supplemented with 4 x 1010 CFU/head/d exhibited increased average daily gain, improved feed efficiency 

and enhanced digestibility of neutral detergent fibre and acid detergent fiber197. In contrast, Finck et al.198 

showed that supplemented yeast at 5 x 1010 CFU/head/d increased DMI, but not ADG, and reduced morbidity 

in receiving calves. Although yeast have resulted in improvements in productivity in ruminants these responses 

have not been linked to a reduction in enteric CH4 emissions.  

Applicability Readily applicable through feeding. 

Expected 

market 

trajectory 

Products are already available on the market, depending on the organism. If a successful DFM mitigant were 

identified, commercialization, regulatory requirements, production, distribution and adoption streams could 

already be in place.  

Expected cost Product costs vary but an example may be US$7000/t and fed at 10g/head/d. 

Constraints to 

use 

Easiest if dealing with microorganism on GRAS list. Other microbial candidates would have to be submitted 

through the appropriate regulatory pathways. 

Lack of DFMs that have proven efficacy in terms of CH4 mitigation. 

Residue in 

animal 

product 

None expected 

No evidence 
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Impacts on 

manure 

No direct impacts on manure other than potential alterations in carbohydrate composition as a result of 

improved ruminal fibre digestion. 

Potential 

regional 

distribution 

These shelf-stable products are already marketed globally.  

Life-cycle 

Assessment 

(LCA) 

As products have not been shown to consistently lower methane emissions, no LCA have been conducted for 

ruminant production systems. 

Actions 

needed to 

accelerate 

technology 

roll-out 

Need to identify yeast strains that result in a consistent reduction in enteric methane emissions.  

Assessment 

Summary 

Fungal DFMs are widely used in grain-based beef and dairy systems. Consequently, extensive reviews and 

meta-analyses have been conducted confirming there is low agreement and low evidence that fungal DFMs 

cause even a low reduction in methane emissions from ruminants. However, fungal DFS do increase milk 

production in dairy cows and can increase growth rate of beef cattle on low (30-50%) forage diets but not on 

high forage diets. 

  



Library of ruminant feed additives 

 

62 

Less Advanced Methane Mitigating Feed Additives 
Biopremix A patented probiotic “for reducing methane production in a ruminant animal comprising the step of 

administering to said ruminant animal an effective amount of at least one strain of bacterium of the 

genus Propionibacterium.” This product is patented to DuPont Nutrition Biosciences. Application 

Number: US20140112889A1 

Cinnamaldehyde 

 

Cinnamaldehyde is the principal constituent of the essential oil extracted from Cinnamon bark. 

Variable results in laboratory and animal studies. Refer to Essential Oils section 

Cowbucha 

(A microbial additive) 

An early-stage probiotic additive being developed for dairy cattle 

Chitosan Chitosan derived from chitin has been used to control the release of additives in the digestive tract. 

Its inclusion in ruminant feeds has given minor but inconsistent effects on methane production after 

4h199 or 96h200 measured in the laboratory,, but no effect on methane emission was evident in cattle 

on forage or concentrate-based rations200,201. 

Fumerate An organic acid effective in mitigating emissions but very expensive. See malate (below) 

Gut motility controllers Several pharmaceutical products are effective in decreasing the retention time of feed in the digestive 

tract and can thus reduce methane production202. These include Slaframine produced as a fungal 

toxin and Thyroid hormone203. Reduced retention time could also result in lower DM digestibility 

depending on diet composition. 

Glucosinolates Purified glucosinolates may affect enteric emissions and this may be mediated by effects on digesta 

kinetics205. 

Harit Dhara Harit Dhara is a tannin and saponin plant extract developed by scientists of the Indian Council of 

Agricultural Research (ICAR) showing early promise in mitigating. However, at 500g/head/d for 

mature bovines it represents a significant proportion of the diet and should be seen as a feed 

ingredient (like cotton seed or vegetable oils) rather than an additive204. 

https://edairynews.com/en/fonterra-turns-to-kowbucha-as-a-possible-methane-reducing-probiotic-for-cows-79720/
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Malate Malate is an organic acid that is readily utilised by rumen organisms which produce propionate, 

depriving methanogens of hydrogen. Chemistry suggests 4g of methane will be spared per 134g of 

malate fed to ruminants216. Since malate is approximately US$5/kg this equates to US$168/kg CH4 

abated, so malate is a safe and effective mitigant but unlikely to ever be economic. Fumerate has the 

same mode of action. 

Macroalgae other than 

Asparagopsis 

 

While Asparagopsis is the principal algae being developed for methane mitigation, the green and 

brown macroalgae are also functional in abatement206,207. However, due to their lower bromoform 

levels they have not as rapidly been taken to animal trials. 

Oregano This flavoursome herb contains essential oils rich in the bioactives thymol and carvacrol96 and has 

been tested in the laboratory and animals for methane inhibitory effects, with mixed results. Refer to 

Essential Oil section. 

Propolis Honeybee propolis is effective in reducing methane production208 and this may be due to the 

flavonoids and phenolics it contains209. High cost is likely to make it uneconomical as a CH4 mitigant. 

Sop Star Cow This commercial European product has primarily been marketed as a microbial means of reducing 

ammonia and methane from housed animals but there is initial evidence of efficacy as a feed 

additive210. 

Statins Statins are highly bioactive and central in cholesterol medication for humans. They are also prevalent 

in plant products and may affect methane production211 and the gut microbiota212.  

Synthetic bromoform Since bromoform is the principal methane inhibiting compound in Asparagopsis seaweed, there is 

considerable interest in introducing the bromoform without needing to provide the seaweed. 

Bromoform is not included on the generally regarded as safe (GRAS) list 

https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras (refer 21 CFR 

182) and there are health impacts at some concentrations that would need to be addressed (refer: 

https://www.epa.gov/sites/production/files/2016-09/documents/bromoform.pdf) 

Tradilin This commercial extract of linseed oil is rich in alpha linolenic acid and is sold commercially with 

linkage into a methane evaluation program. 

https://www.sopfarm.com/sectors/sop-scientific-works/sop-scientific-works
https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras
https://www.epa.gov/sites/production/files/2016-09/documents/bromoform.pdf
https://www.valorex.com/en/the-eco-methane-environmental-approach/
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Assessment of industry preparedness for 

methane-lowering feed additives 

Introduction 
There has been considerable global investment in researching the ten feed 

additives described in the attached scientific report, as well as an even wider 

array of additives that have not yet shown sufficient promise to warrant 

extensive investigation. Despite this investment, little is known about the 

preparedness of the delivery pipeline to take feed additives into commercial 

production, to use them in prepared feeds or supplements, and to have those 

products purchased and used by commercial livestock managers. In the 

following assessment, we developed an introductory understanding of the 

interest and level of preparedness of different actors in the feed additive pipeline 

(additive-manufacturers, feed or supplement manufacturers and livestock 

managers) to achieve significant GHG emission mitigation in developed and 

developing countries. 

Methods and materials 
Questionnaires were prepared relevant to each actor in the feed additive pipeline 

as presented following this report (Appendix 1). We sought to reach at least five 

actors in each category (Table 2). Respondents were not all chosen at random, 

with some being known contacts or being selected on appearance in published 

literature or promotional material. We shared the questionaries as a MS Word 

file and as an on-line form (Google Forms). Table 1 shows the number of 

questionaries completed and Figure 4 shows the source countries for responses.  

Questions were designed to elicit a YES/NO response wherever possible. Where 

a result was unclear the responding company was approached again, and the 

answer clarified. Some organisations approached did not complete the survey 

but provided insights that are included in the discussion. 

Table 2. Summary of the number of responses received from participants in each 

sector, partitioned by stage of development of the country. 

Sector Developed countries Developing countries 

Additive manufacturers 4 4 

Feed/supplement 

manufacturers 

6 8 

Livestock managers 5 21 
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Figure 4. Location of organisations completing questionaries for Additive 

manufacturers (8), Feed manufacturers (14) and Livestock managers (24) 

Results and discussions 
Findings are presented in written form below followed by a more visual ‘Info-

graphic’ format on the subsequent pages. 

Observations from additive manufacturers/harvesters 

A range of national and international manufacturers were approached, whose 

products or potential products covered many of the additive classes assessed in 

the attached technical review. Some companies could be expected to have the 

capacity to service this market, but presently have no known activity in the 

sector. Potential factors that prohibited their engagement were considered. 

Of the eight manufacturers who responded, six identified methane mitigation as 

the primary claim of the product they would or do produce, and manufacturers 

most frequently expected that a product would take less than five years to 

commercialise. Many nature-based products such as probiotics or essential oil 

components or blends may not require registration in many countries. 

Most manufacturers identified developed countries as a high to very high priority 

market (seven of eight) as compared to developing country markets (three of 

eight). In addition, they most often identified feedlots (seven of eight) and dairy 

(five of eight) as high to very high priority. No manufacturers identified the 

grazing industry as an extremely high priority for implementation.  
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Two of eight manufacturers expected that the inclusion of feed additive would 

increase the cost of ration from 0 to 1%, and two manufacturers expected to 

increase feed price by from 1 to 5%, but four of eight manufacturers did not 

declare the likely cost increment. Regarding constraints to developing additives, 

five of the eight respondents identified research (or lack of research) as a high 

to very high priority constraint to commercializing products. Lesser restrictions 

included the manufacture of additives (once discovered) and the registration 

demands (high to very high priority issues for 50% and 38% of respondents, 

respectively). Views on consumer demand as a constraint were mixed, with 50% 

indicating it was a low priority or not a priority constraint and 50% it was a high 

to very high priority. This may have reflected 3 of the 8 organisations 

responding have businesses based on Asparagopsis, and there has been a very 

high media profile creating strong consumer awareness and interest, even 

though supply is limited. Fifty seven percent identified the value proposition 

(economic return) as a high to very high impact constraint to product 

development. 

Observations from feed and supplement manufacturers 

The survey primarily addressed local or regional feed manufacturers (71%) and 

only 2 of 14 responders said they already produce a feed product with a low 

methane claim. Many respondents thought probiotics (64%) and essential oils 

(50%) and antibiotic rumen modifiers (ARM: 50%) effectively reduce methane 

production, with only 4, 2 and 1 of the 14 respondents aware of 3-

nitrooxypropanol, Asparagopsis, and nitrate as additives, respectively. 

Only 14% of respondents thought feeds or supplements to manage enteric GHG 

emissions was a current high or extreme priority for their company but 43% of 

respondents expected this priority to change to a high or extreme priority within 

five years. Feed manufacturer respondents identified product cost (including 

additive) as the greatest impediment to developing methane suppressing 

additives, being high or extremely high priority factor for 57%. 

Half of the feed manufacturers said consumer demand was an extremely high 

priority consideration in their moving to low methane feed manufacturing; that 

is, that consumer demand would be needed for them to develop and deliver a 

low methane feedstuff. The fact that 71% then said consumer demand (or lack 

of it) was the main constraint to their developing a commercial methane 

inhibiting feedstuff indicates that feed manufacturers do not currently perceive a 

demand for such feeds or supplements by livestock managers. 

Observations from livestock managers 

The majority of the livestock enterprises who responded to the questionnaire 

were beef cattle producers (84.6%) and ranged in operation size, from 

operations having less than 1,000 head (12 operations) to having more than 
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10,000 head (9 operations). The operations surveyed were primarily in two 

developing countries (Indonesia and Brazil; 5 and 16 respectively). 

Many are already using feeds that contained additives, with more than 60% 

using probiotics and more than 50% using ARM. The primary reason for using 

feed additives was increased animal performance (81%), with improved feed 

efficiency (73%) and health (69%) being the next most important. 

Only one of 26 respondents said GHG management was a current reason for 

adopting a feed additive, and 81% said GHG management was a low priority, or 

had no priority. However, respondents expected commercial interest to increase 

with only 31% of the same respondents expecting additives for GHG mitigation 

would have low or no priority in 5 years. 

The increased adoption of methane mitigating additives they expected to occur 

over time was primarily motivated by an expected increase in animal 

performance and feed efficiency (92% of respondents), with company image and 

market economics (e.g., C credits) also important motivators (for 73% of 

respondents). 

While most livestock managers expected methane-reducing additives to increase 

productivity and economic gain, 27% of respondents said they would only pay 

up to 1% above current feed prices, and 27% said they would pay up to 5% 

more to have the additive included. 

All enterprises said they needed additional information on additives to consider 

their adoption (24 of 24), but where they would source this information varied. 

Most (58% of respondents) indicated that they would seek information from 

existing suppliers of existing feed with additives, but 46% said they would 

search on-line for suppliers or for scientists. Only 39% said they would contact a 

scientist directly. 

The infographics below provide a visual summary of the main observations in 

each sectoral survey, then the key data and implications are discussed.
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Discussion 
Although very limited in scope, the data indicate a feed additive pipeline that is 

poorly prepared to achieve a substantial reduction in global livestock emissions 

in the next five years. This is because of narrow target markets for additive 

manufacturers, a poor level of understanding about emerging additives, 

unrealistic expectation of co-benefits, and lack of clarity regarding potential off-

farm financial rewards. Some of these critical points are discussed below. 

Towards achieving global mitigation 

The survey of additive manufacturers identified that the primary target market 

for methane mitigating feed additives is the developed countries, and specifically 

within those, the feedlot and dairy industry. As identified in the main review, 

feedlots contribute less than 3% of enteric emissions. With none of the seven 

manufacturers identifying the grazing industry as an extremely high priority 

market, there is the distinct possibility that the developing world and the grazing 

industries world-over will be delayed in receiving any new emerging methane 

suppressing additives. Coupled with this, is low current interest in developing 

methane suppressing feed products in the feed industry and a poor 

understanding within the feed industry of available or emerging additives to 

suppress methane. Rapid global mitigation of livestock methane by feed 

additives is therefore unlikely to be realized. 

Incentives and motivation for methane suppressing additives 

The data suggests end-users are mostly expecting the inclusion of a methane 

additive in processed feeds or supplements to increase the price of that feed by 

no more than 5%. Both the end-users and the feed manufacturers are expecting 

an economic return for producing or using feeds containing methane suppressing 

additives, with that return either via productivity or external economic support. 

It is a serious concern that of the ten additives evaluated in the main review, 

none offered robust evidence of productivity or efficiency gains of 10% and most 

offered far less, if any at all. The large-scale studies required to quantify the 

scale and variability in productivity responses to mitigation have not been 

completed. This places the feed industry in a weak position to make a business 

case for the inclusion of additives.  

To further the economic challenge, the cost of the additive was thought by feed 

manufacturers to be the most important constraint for their developing of low-

emission feeds. In general, neither feed mills nor livestock managers would use 

methane suppressing additives or feeds unless there was an economic 

advantage or legislated requirement. One observation, from discussion rather 

than scripted questions, was that livestock producers selling a branded livestock 

product (a product where the growers name goes with the product through to 

the final consumer) may absorb the costs of methane mitigation practices, 
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because a low methane claim could favourably affect consumer purchase 

choices. In contrast, livestock producers selling into a commodity market 

(effectively losing linkage to their product at the farm gate) would need a 

financial return from productivity, carbon value or subsidy to justify the use of 

additives. Several companies that manufacture feed additives are looking for 

recognition of the carbon value of their products (e.g., Mootral through Verra) or 

real cash subsidies from industry or government (e.g., SilvAir). 

Understanding of methane-lowering additives 

More than half of the livestock enterprises were using feeds that contained some 

natural, synthetic, or probiotic additive, but only one producer (of 26) was using 

an additive to improve environmental outcomes and over 80% described GHG 

emissions as a low or non-priority issue for their enterprise. All producers said 

they needed external information regarding supplements with the highest 

ranked source for this information being existing industry suppliers of feeds that 

contain additives. 

Unfortunately, the feed manufacturers also lack an in-depth understanding of 

the methane suppressing feed additives available, as only 4 of the 14 feed 

manufacturers had any knowledge of the three most efficacious additives (as per 

main review). So, there is a poor flow of information from scientific research to 

feed manufacturers and an unrealistic expectation of on-farm co-benefits arising 

from the use of methane lowering additives. 

The future 

The data confirm a strong expectation for change among both livestock 

enterprises and feed manufacturers around the production and use of feeds and 

supplements containing methane-lowering additives in the next five years. This 

change can only develop if there is a better exchange of data from additive 

manufacturers to feed manufacturers and on to the livestock managers. The 

information flow must also clearly articulate the economic (or regulatory) 

argument for additive use. The economic case requires rapid completion and 

dissemination of findings from highly replicated studies of co-benefits which may 

be associated with each additive product. This large-scale testing is likely to 

occur for high efficacy additives where there is patent or licencing protection in 

place, such as 3-nitrooxypropanol, Asparagopsis seaweed or nitrate. However, 

the lack of intellectual property ownership together with the low methane 

inhibition efficacy of other additives such as tannins, saponins, direct fed 

microbials, biochars and older antibiotic rumen modifiers means these replicated 

co-benefit quantification studies are unlikely to be made. Consequently, the 

commercial argument for these products will remain weak and their defence 

problematic. 
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There is also a clear call from the additive manufacturing industry itself for more 

research to develop new products. From discussion with companies who in some 

cases opted to not complete this survey, it was apparent that many of the 

national additive supplying companies operate by commercialising discoveries 

made by universities or research institutes, and by production of older bio-

actives that have fallen out of patent protection. These companies did not have 

the budget or staff to discover new compounds or pre/pro/postbiotics that may 

reduce methane emissions. This narrows the field of participants for potential 

discoveries of new high efficacy methane-inhibiting feed additives. It also 

identifies the strong need for public sector research for discovery of new 

additives for this purpose, rather than leave discovery to the commercial sector’s 

limited pool of large international agrichemical companies.  

In conclusion, while this survey was limited in scope, it has identified that there 

is a failing to transfer information about current and emerging methane 

suppressing feed additives. Communication is needed between publicly funded 

research providers and potential product manufacturers; between additive 

manufacturers and feed manufacturers, and through to the livestock managers 

who ultimately deliver the feed additives. A major barrier to adoption is the lack 

of assured profitability of methane mitigation additives in the absence of clear 

animal production impacts on other revenue sources such as improved feed 

efficiency, growth or meat quality. At this time, incentives such as carbon credits 

or financial subsidies are likely to be required to encourage widespread adoption 

of these additives by the ruminant livestock industry.  
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Appendix 1. Surveys for livestock producers, 

feed manufacturers, bioactive manufacturers 
To meet the objective of understanding whether the industry delivery pipeline 

for methane suppressing additives is ahead, behind or in step with discovery of 

these additives in scientific research, a set of surveys were prepared. 

Separate surveys have been developed for:  

• Livestock producers/managers 

• The processed feed manufacturers and supplement industry  

• The feed-additive manufacturing industry 

The surveys were either completed on the MS Word documents as presented 

below or presented as a Google Form. 

Survey for livestock producers and managers 
Dear participant, the objective of this interview is to document the trajectory, 

challenges, and future perspective of the feed additive industry in the use of 

technologies for reducing enteric methane from ruminant livestock.  

Note: Can the product specifications files be provided if available please? The 

views would be anonymous and simply recorded as a set of comments from 

Livestock Company X.  

Name: Role: 

Company name: Company code: 

QUESTION ANSWERS / NOTES 

1) How many ruminants are you 

responsible for (small/large 

ruminants)? 

Please mark (X) one of the options below: 

(____) 0 – 100 head 

(____) 101 – 1,000 head 

(____) 1001 – 10,000 head 

(____) > 10,000 head 

Provide partitioning into species (__sheep, __cattle) 

2) What feed additive technologies 

do you already use in your 

livestock? 

 

Please mark (X) one or more of the options below: 

(____) Monensin/other antibiotic rumen modifiers 

(____) Probiotics/Direct feed microbials 

(____) Essential Oil Blends  

(____) Saponins or tannins 

(____) Biochar 

(____) Other_____________________ 
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3) What is the reason for adopting 

this feed additive technology in 

your livestock? 

Please rank the priority (1 = none to 5 = extreme 

priority) in the options below:  

(____) Animal performance  

(____) Animal health 

(____) Feed efficiency 

(____) Feed cost 

(____) Environment 

(____) GHG emissions 

(____) Other______________________ 

4) How important is managing and 

reducing emissions of GHG from 

your livestock enterprise now, and 

going to be in next 1, 5 and 10 

years? 

Please rank your priority (1 = none; 5 = extreme 

priority) below: 

(____) Currently 

(____) In the next 1 year 

(____) In the next 5 years 

(____) In the next 10 years 

5) What would motivate you to use 

feed additives that reduce GHG 

emissions in your diets? 

Please mark (X) one more option below: 

(____) Company or legal requirement 

(____) Desire for a positive company image 

(____) Market pays me more (e.g., Carbon Credits) 

(____) Improved animal performance/feed 

efficiency 

(____) Improved carcass weight  

(____) Reduced production cost 

(____) Improved animal welfare and environment 

(____) Improved meat or milk quality 

(____) Other_____________________ 

6) How much more would you be 

willing to pay (% of the total diet 

cost diet) for an additive that 

reduces GHG emissions? 

Please mark (X) one of options below: 

(____) 0 to 1%  

(____) 1 to 5% 

(____) 5 to 10% 

(____) > 10% 

I don’t know as a percentage, but we expect to 

pay:… 

7) How would you source 

information to guide your decisions 

about choosing feed additives to 

reduce livestock methane 

production? 

Please mark (X) one or more of the options below: 

(____) Don’t need outside information 

(____) Search online for a scientist or research 

organisation to ask 

(____) Search online for companies supplying 

emission inhibitors 
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(____) Search online for products claiming to inhibit 

livestock methane 

(____) Contact a known supplier of additives (e.g., 

Monensin) and ask their advice 

(____) Contact a local scientist  

(____) Other_________________ 

8) Do you have any further 

comment on your organisation’s 

contribution to producing low-

methane livestock, feed or livestock 

products? 

 

Survey for feed manufacturers 
Dear participant, the objective of this interview is to document the trajectory, 

challenges, and future perspective of the feed additive industry in the use of 

technologies for reducing enteric methane from ruminant livestock.  

Note: Can the product specifications files be provided if available please? The 

views would be anonymous and simply recorded as a set of comments from 

Australian Supplement Company X.  

Name: Role: 

Company name: Company code: 

QUESTION ANSWERS / NOTES 

1) Are you a local, regional, 

national, or international producer 

of supplements for ruminants? 

Please mark (X) one of the options below:  

(____) Local 

(____) Regional 

(____) National 

(____) International 

2) Do you already make any 

products with a low methane claim? 

Please mark (X) one of options below: 

(____) Yes 

(____) No 

3) Do you already know feed 

additives you could look to include 

to reduce ruminant emissions? 

Please mark (X) one or more of the options below: 

(____) 3 Nitrooxypropanol 

(____) Asparagopsis 

(____) Microalgae 

(____) Nitrate 

(____) Antibiotic Rumen Modifiers 

(____) Essential Oil Blends 

(____) Saponins 

(____) Tannins 
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(____) Humates 

(____) Biochar 

(____) Probiotics 

(____) Other________________________ 

4) Is a low methane supplement a 

desired product for you now, and in 

the next 1, 5 and 10 years? 

 

Please rank the priority (1 = none to 5 = extreme 

priority) in the options below: 

(____) Currently 

(____) In the next 1 year 

(____) In the next 5 years 

(____) In the next 10 years 

5) What factors would affect the 

priority you give to moving into low 

methane supplement manufacture? 

Please rank the priority (1 = none to 5 = important 

factor) in the options below: 

(____) Our company policy towards low carbon systems 

(or carbon neutrality or similar) 

(____) Awareness of what products are available 

(____) Cost of products available 

(____) Financial incentives: (e.g., Government or 

Carbon Credit) 

(____) Customer demand for methane lowering 

products (GHG friendly) 

(____) Other_______________________ 

6) Where would you or have you 

sourced information to guide your 

choice of additive? 

 

Please mark (X) one or more of the options below: 

(____) Scientific journals 

(____) Web pages (Blogs, journals, etc.) 

(____) Participation in events (webinar) 

(____) University and researchers 

(____) Other_______________________ 

7) What are the main constraints to 

commercial release of product in 

these countries and industries?  

Please rank the priority (1 = none to 5 = extreme 

constraint) in the options below: 

(____) Research and development 

(____) Registration/legal approval process  

(____) Production scale-up and logistics 

(____) Marketing and sales strategy 

(____) Consumers’ demand 

(____) Other _______________________ 

8) Do you have any further 

comment on your organisation’s 

contribution to producing low-

methane livestock feed or products? 
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Survey for manufacturers of mitigation agents 
Dear participant, the objective of this interview is to document the trajectory, 

challenges, and future perspective of the feed additive industry in the use of 

technologies for reducing enteric methane from ruminant livestock.  

Note: Can the product specifications files be provided if available please? The 

views would be anonymous and simply recorded as a set of comments from 

Australian bioactive Company X. 

Name: Role: 

Company name: Company code: 

QUESTION ANSWERS / NOTES 

1) What will be the primary marketing 

claim the company expects to use to 

launch this methane inhibiting additive 

into the market?  

 

Please rank the priority of any claims likely 

to be made (1 = none to 5 = principal claim) 

(____) Inhibits methane production 

(____) Rumen modifier/enhancer 

(____) Palatability enhancer 

(____) Growth promoter 

(____) Animal health 

(____) Other_________________________ 

2) How long was (or will be) the duration 

from development to commercialization?  

Please mark (X) one of the options below: 

(____) 0 to 1 year 

(____) 1 to 5 years 

(____) 5 to 10 years 

(____) > 10 years 

3) In which industries (e.g., dairy/ feedlot/ 

grazing) are these additives currently being 

anticipated for commercialization?  

  

Please rank the current priority (1 = none 

to 5 = extreme priority target) 

(____) Dairy 

(____) Feedlot 

(____) Grazing 

4) What is the expected incremental cost 

(%) of the diet that farmers will pay for 

adopting this technology?  

Please mark (X) one of options below: 

(____) 0 to 1% more 

(____) 1 to 5% more 

(____) 6 to 10% more 

(____) > 10% more 

Other measure of cost_________________ 

5) What countries are the company 

currently (or planning to) targeting? 

Please rank the priority of each market (1 = 

minimal interest to 5 = extreme priority) 

(____) Developed countries 

(____) Developing countries 



Appendix 1 

 

102 

6) What are the current main constraints 

to commercial release of a methane 

reducing product in these countries and 

industries? 

  

Please rank the priority (1 = none to 5 = 

extremely high constraint) in the options 

below: 

(____) Research and development 

(____) Registration/legal approval process  

(____) Production scale-up and logistics 

(____) Marketing and sales strategy 

(____) Consumers’ demand 

(____) Other _______________________ 

7) What don’t we know about this feed 

additive technology that you think still 

needs to be researched? 

 

Please rank the options below (1 = no 

need to 5 = extreme research needed)  

(____) Reduction on GHG emissions 

(____) Microbial population changes 

(____) Animal health impacts 

(____) Dose and chemical composition 

(____) Residue in meat and milk 

(____) Cost and payback  

(____) Other_________________________ 

8) In your opinion what are the future 

challenges the industry developing feed 

additives for GHG emissions will face in the 

next 5 to 10 years? 

Please rank the options below (1 = none to 

5 = an extreme challenge)  

(____) Chemical discovery 

(____) Safety and efficacy testing 

(____) Registration 

(____) Market interest 

(____) Other_________________________ 

9) Do you have any further comments on 

your organisation’s contribution to 

producing low-methane livestock feed or 

products? If you do not/will not 

manufacture a methane suppressing 

additive, please explain why not? 
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Appendix 2. Project terms of reference 
This report was compiled to meet the following contracted obligations: 

Scope 
The scope of the review should include: 

• Technologies that are presently commercially available and those under 

development that have published data on their impacts. 

• Evidence available from developing countries as well as developed 

countries. 

• Impacts on emissions from enteric fermentation, manure, and production 

or transport of the feed additive if available. 

Activities  
The assessment will include the following activities: 

• Identify known technologies globally, by product type, with examples. 

• Compile and evaluate the robustness of the evidence for known 

technologies’ effects on (i) animal health, nutrition, and productivity, (ii) 

GHG emissions at the animal and lifecycle levels, (iii) food quality or 

safety, and (iv) any other animal, human, or environmental impacts or 

risks resulting from the production or use of the technology. Evidence 

should be drawn from the scientific literature or other reliable and 

published data sources. Note: Limited information is likely to be available 

on lifecycle analysis and food quality/safety issue. This information may 

equate to just one line in any developed reference library depending on 

the data that can be sourced.  

• Summarize the technologies’ efficacy based on the evidence compiled.  

• Identify conditions for manufacture, distribution, farmer accessibility and 

use of the technology, including palatability. Identify costs of the 

technology in developing countries. Use scientific literature where 

possible, or other sources, including interviews. 

• Conduct interviews with feed additive developers (n=10-15) to identify 

the trajectory of the industry in the next five to ten years and related 

research needs. Develop a survey template to ensure a consistent 

approach to the interview process. Results compiled as an addendum to 

the report. 

• Draw conclusions highlighting:  

o Where is the potential for feed additives for greenhouse gas 

emissions reductions highest, with the least trade-offs?  

o What is needed to further development the feed-additive industry in 

the next 5-10 years, especially to make additives attractive and 

accessible in developing countries?  
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o What additional research is needed to advance the potential of feed 

additives uptake? 

Outputs 
• Development of a feed additives reference library (expected n=15-30 

technologies). Each technology will be detailed using a specially designed 

template. This will be a living document, easily updated with time.  

• Produce a policy brief summarizing the results of this activity. 

• Produce a table of commercially available feed additives, their cost (this 

may have to be a 5-star scale rather than a dollar value) and their efficacy 

that can be posted on websites. 

• Present results in a GRA-CCAFS webinar. 

All activities and outputs would be co-branded with GRA/CCAFS and relevant 

funding sources and widely promoted in GRA/CCAFS communications.  
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