

Colorado State University

General Guidance on Activity Data Collection Methods

Stephen M. Ogle, Ph.D. Natural Resource Ecology Laboratory Department of Ecosystem Science and Sustainability Colorado State University

Overview of Presentation

NR EL

- General GHG Inventory Steps
- Data Sources
- Filling Data Gaps

NATURAL RESOURCE ECOLOGY LABORATORY

General Activity Data Sources

- Data Source Types
 - Census
 - Survey
 - Expert Knowledge
- Data Collection
 - e.g., Questionnaire, Remote-sensing technologies, Site visits

Census-Based Methods

Census-Based Methods

- Goal: Quantify population parameter with data for all entities in population
- Should have no uncertainty
- Non-responses can be problematic and must be addressed
- Not always possible to apply census-based methods due to financial, labor or time constraints

Surveys/Sample-Based Methods

Survey/Sample-Based Methods

- Goal: Use the sample statistic to make inferences about the population parameter
- Randomly select samples through a formal process
 - Simple random sampling, systematic sampling, stratified sampling, multiple stages
- Collect data and evaluate
- Given statistical design, calculate sample statistics and variances and then use the results into inventory analysis
- N R E L
- Variances allow you to quantify uncertainty

Land Use/Cover Area Frame Statistical Survey (LUCAS)

Expert Knowledge

- Suitable if other types of data collection are not feasible
- Should be collected from multiple experts
- Evaluate biases
 - Focus on recent experiences, limited experience in general, motivation or managerial goals, selection bias
- Quantify uncertainty based on responses

Expert Knowledge - Farming Practices in Brazil

Table 1 Proportion (%) of total area in each land-use and management category in Mato Grosso and Rondônia during 1970, 1985, and 2002

Land-use and management categories	Mato Grosso (%)			Rondônia (%)		
	1970	1985	2002	1970	1985	2002
NT – high input/Cerrado	0.0	0.0	0.1	0.0	0.0	0.0
FT – high input/Cerrado	0.02	0.04	0.02	0.0	0.0	0.0
NT - medium input/Cerrado	0.0	0.0	11.5	0.0	0.0	0.0
FT - medium input/Cerrado	1.3	5.0	1.7	0.0	0.0	0.0
NT – low input/Cerrado	0.0	0.0	3.1	0.0	0.0	0.0
FT – low input/Cerrado	0.8	3.8	0.5	0.0	0.0	0.0
NT - high input/Forest	0.0	0.0	0.04	0.0	0.0	0.006
FT - high input/Forest	0.008	0.01	0.006	0.01	0.005	0.004
NT - medium input/Forest	0.0	0.0	4.6	0.0	0.0	1.6
FT - medium input/Forest	0.5	1.9	0.7	4.6	9.7	1.1
NT - low input/Forest	0.0	0.0	1.3	0.0	0.0	1.3
FT - low input/Forest	0.3	1.4	0.2	6.4	12.8	0.9
Perennial crops	0.2	0.6	0.2	5.1	12.1	4.0
Nominal grassland/Cerrado	43.3	22.0	7.4	0.0	0.0	0.0
Nominal grassland/Forest	36.9	18.8	6.3	76.4	54.2	24.7
Degraded grassland/Cerrado	8.3	23.4	23.1	0.0	0.0	0.0
Degraded grassland/Forest	7.0	19.9	19.7	7.2	10.3	59.2
Improved grassland/Cerrado	0.7	1.6	10.5	0.0	0.0	0.0
Improved grassland/Forest	0.6	1.4	8.8	0.0	0.4	6.9
Settlements	0.06	0.15	0.2	0.3	0.5	0.3
Total managed area (10 ³ ha)	10629.7	20335.6	29060.6	367.6	1775.5	5744.0

Note that forest includes Amazon forest and Cerradão (high Cerrado) areas.

NT, no-tillage, FT, full tillage.

Maia et al. 2010, Global Change Biology

Filling Gaps in Activity Data

- Important for time series consistency
- Data splicing method (IPCC 2006, 2019)
 - Surrogate data

NR

Trend Interpolation/Extrapolation

Conclusions

- Three basic types of data collection census, survey and expert knowledge
- Use the type most appropriate given the resources and circumstances
- Quantify uncertainty so error can be propagated through inventory analysis
- Fill-gaps using appropriate data splicing methods

NATURAL RESOURCE ECOLOGY LABORATORY

Thanks for your attention!

Colorado State University