Greenhouse gas emissions and global warming potential associated with furrow-irrigated rice from a silt-loam soil in east-central Arkansas

Diego Della Lunga PhD Environmental Dynamics Advisor Dr. Kristofor Brye

Introduction

Rice in Arkansas

- 45.6% of the entire US production
- Conventional tillage: ~ 51% of rice area
- Delayed-flood system: 60% of rice fields
- Furrow-irrigation: 10.5% of rice fields
- Management practices can reduce GHG emissions from rice fields by 20 to 50%

Justification

- Groundwater depletion in the Delta region of eastern Arkansas
- Furrow-irrigated practices

 Environmental sustainability of the furrowirrigated system and spatial variability of GHG emissions

Objective

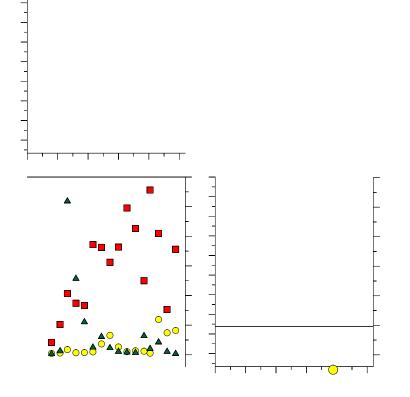
 Evaluate GHG fluxes and season-long emissions (CO_2, CH_4, N_2O) and global warming potential under different tillage treatments (CT and NT) and at different site positions (up-, mid-, down-slope) of a production-scale, furrowirrigated rice field on a silt-loam soil in eastcentral Arkansas

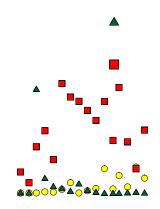
Site Description

 Rice Research and Extension Center east of Stuttgart, AR

Materials and Methods

 Vented, non-flow-through, non-steady-state chambers

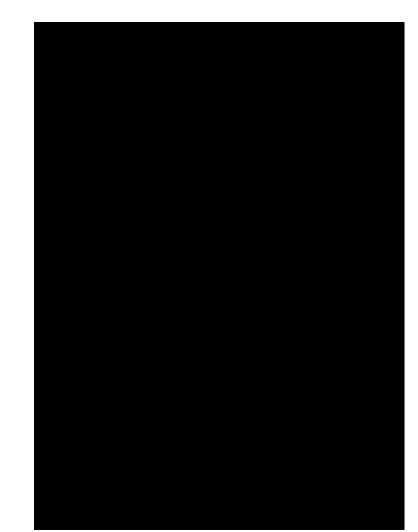




Statistical Analyses

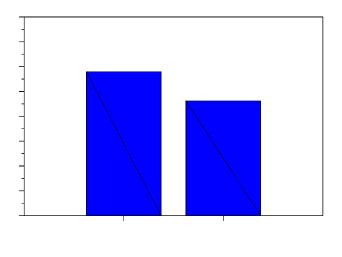
- Strip-plot design
- Analysis of variance (ANOVA)
- Fixed effects
 - GHG fluxes
 - Site position, tillage, date, and their interactions
 - GHG emissions
 - Site position, tillage, and their interaction
- Significance judged at P < 0.05

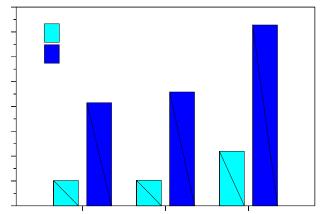
GHG Fluxes 2018

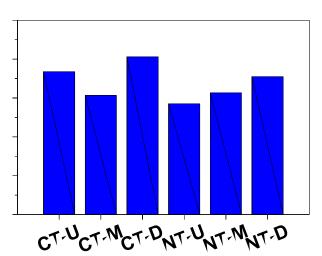

Emissions

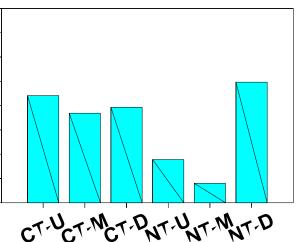
Property	Tillage (T)	Site position (SP)	T x SP
	P		
CO ₂			
2018 emissions	0.053	0.002	0.531
2019 emissions	0.463	0.348	0.041
CH₄			
2018 emissions	0.601	< 0.001	0.367
2019 emissions	0.147	< 0.001	0.400
N ₂ O			
2018 emissions	0.087	0080	0.206
2019 emissions	< 0.00	0.200	0.248
GWP			
2018 emissions	0.029	< 0.001	0.208
2019 emissions	0.133	0.113	0.363
GWP*			
2018 emissions	0.103	0.009	0.137
2019 emissions	0.007	0.018	0.025

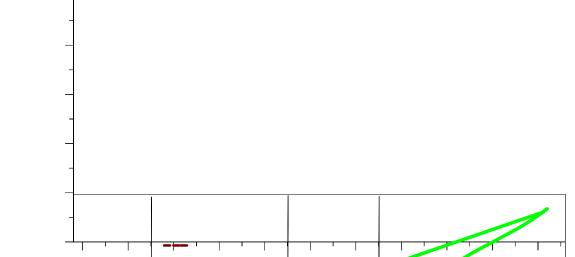
Emissions

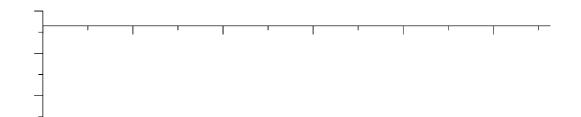


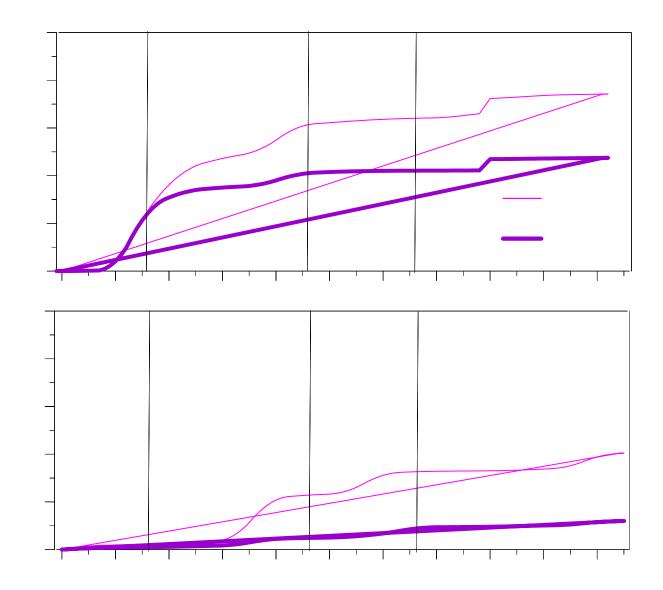



Global Warming Potential


2018






Cumulative Emissions

Cumulative Emissions

Conclusions

- CT had greater N₂O emissions than NT in both years
- Down-slope generally had greater GHGs emissions in both years

GWP Similar trends as for CO₂

ability

Implications

- Importance of fluxes
- Site-specific BMPs
- Future research

Acknowledgments

- Dr. K. Brye
- Dr. C. Henry
- Ms. J. Slayden

UNIVERSITY OF ARKANSAS. Dale bumpers college of agricultural, food & life sciences

DIVISION OF AGRICULTURE

RESEARCH & EXTENSION

University of Arkansas System

Questions?

