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The Mission of the DBNRRC
e Explore global genetic diversity AL
e Understand Trait-Gene relationships
* New breeding tools and varieties
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How does rice genetics contribute to this process as well as serve as a
means of mitigation?
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Complex process that is affected 
What role can cultivar/genotype play


Cultivar Seasonal CH4

Seasonal N20

Seasonal GWPt Seasonal GWP %

kg CH,-Cha™!

Calmati-202 58 (2.9)a¥
L206 60 (12)a
M206 69 (9.6)a
Calmati-202 6.7 (0.9)b
CLXL745 11(3.1)ab
CLXP4534 11 (0.4)ab
L206 14 (2.2)a
M206 11(1.1)ab
CLXP4534 25
Francis 43
Jupiter 15
Sabine 55
CLXL745 56 (9.2)b
Francis 77 (14)a
Jupiter 72 (16)ab
Sabine 5(7.5)ab

kg N,O-N ha~"

0.05(0.021)a
0.06 (0.004)a
0.06 (0.018)a

—0.15(0.016)a
—0.19(0.025)a
—0.16 (0.037)a
—0.13 (0.016)a

( )

—0.11 (0.028)a

0.17
0.10
0.08
0.10

0.02 (0.047)a
0.10 (0.052)a
—0.01(0.022)a
0.11(0.114)a

kg CO, eq ha™!

1988 (90)a

(344)b
2677 (459)a
2397 (534)ab
2623 (154)a

kg CO,eq™" Mg™
CA-1§
277 (19)a
(29)a
225 (30)a
CA-2
10 (3.6)b
29#{12]ab
2(2.6)ab
33(6.1)a
23 (6.1)ab

384
AR-2
232 (44)b

381 (81)a
345 (59)ab
397 (30)a

Direct seeded, flood,
CA and AR

Environmental
Variability
Cultivar Differences,
Unstable

N20 of little effect

Simmonds, 2015. Journal of
Environmental Quality, 44(1),
pp.103-114.
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Research initiated in 2011 by University of Arkansas, University California – Davis, and USDA-ARS to determine if there were genetic differences in GHGE.
There are genetic differences, although they are not always consistent in different years.
Under these flooded field conditions, N2O was insignificant in contributing to GHGE. That finding was subsequently confirmed in numerous studies with CH4 accounting for will over 80% of GHGE



2016 Conducted greenhouse study comparing five cultivars
— three US tropical japonica cultivars from the previous
field study, a hybrid, and a high yielding indica cultivar.

- 18000
.05} - 15000- ii‘sj?gik(lzyl_l(jH,_1 (reproductive stage)
£ 2 12000 © ¢
S & 9000
T T, I
O 1 6000;
g O,
s
|_

XL745 Francis Sabine Jupiter Rondo
What is the genetic basis for these differences?
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Conducted GH study more controlled conditions, eliminate some of the environmental variability, better understanding of genetic effect. Focused just on CH4
Choice of varieties, hybrid, US tropical japonica - major LG FRCS, specialty LG Sabine, Jupiter major medium grain, and Rondo – high yielding indica Rondo used for specialty mkts
Large differences in CH4 emissions, different varieties a composite of many different genes and traits


B Root transverse section area W Aerenchyma area —Aerenchyma area ratio
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A survey of
39 global
varieties
grown under
flooded field
conditions

erformed to

etermine
genetic
variability for
root size and
aerenchyma
traits.
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Kim, 2018. PlantBreeding and Biotechnology, 6(4), pp.381-390.
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Wide genetic variation in aerenchyma area, root transverse section and % aerenchyma. Five varieties that we had shown differed in CH emissions captured most of this variability.


Cultivars differing in CH4 emissions showed moderate positive
correlations with root size parameters but not % aerenchvma.
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Variety

CH4 Emissions: Very High Mod. High Low Low Low
Kim, 2018.
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This suggested that varieties with a larger root system and had more aerenchyma to serve as a conduit for CH4 emissions from the soil
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Kim et al. 2018. RTWG
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Looking at the same varieties for what other traits may be associated with CH4 emissions.  Looking at the 4 inbreds, see a consistent positive association between CH4 and TN, PN, and more emissions after heading during grainfill. Interestingly the hybrid had a very different response with emissions peaking and subsiding during GF 


CH4 Emissions Were Highly Correlated with Root and Shoot Biomass at
Maturity But Not Grain Yield
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Francis (TRJ) and Rondo (Indica) Were Divergent for CH4 Emissions and Root and Shoot Biomass

Kim et al. 2018. RTWG



Francis x Rondo Mapping Population of 220 Recombinant Inbred Lines Were Used
to Explore Traits Associated with CH4 Emissions in A Common Genetic Background

Heading days (d) Height (cm)
100 180
95 Rorido 170
90 160
g5 150
80 Frarcis :;g
12 Francis
nanndu
100 ‘
90
BO
70 R EE R P ER N R P N

Selection of ~70 RILs Within a Similar Heading and Height Range



RILs and Parents Were Evaluated for Shoot and Root Biomass at 6 wk
stage and 9 RILs Were Selected for CH4 Emission Evaluation

Shoot biomass (g)

5
®
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Barnaby, J.Y., Pinson, S.R., Chun, J. and Bui, L.T., 2019. Covariation among root biomass,
shoot biomass, and tiller number in three rice populations. Crop Science, 59(4), pp.1516-1530.



CH4 Measurements At the Heading Stage (2) 14000
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Pre-draining cumulative

CH,-C efflux [g ha'd]

As Among the Different Cultivars, CH4 Emissions Were
Correlated with Root and Shoot Biomass but Not Yield.
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RILS Differing in CH4 Emissions Were Selected for Soil Microbiome Studies
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Fernandez-Baca, C.P., Rivers, A.R., Kim, W., Iwata, R., McClung, A.M., Roberts, D.P., Reddy, V.R. and Barnaby, J.Y., 2021. Changes in rhizosphere soil microbial communities across plant
developmental stages of high and low methane emitting rice genotypes. Soil Biology and Biochemistry, 156, p.108233.
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 Francis showed lower methane emissions and relative abundance of methanogen populations during the heading stage where methane emissions were highest for the other genotypes. This indicated that the reduced methane emissions trait was associated with small changes in the composition of methanogens rather than wholesale community shifts. 
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Ding et a. 2021.



Other Plant Parts Need to Be Studied for Their Role in GHGE
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Different rice vaneties

Different parts of rice plant



High

carbohydrates | 2-(3-Hydroxyphenyl) ethanol

0-0-Acetylarbutin

1"-glucoside

Bacteria
enrichment

Chloroflexi (generus REG-16-35-14)
Firmicutes (generus Exiguobacterium)
Actinobacteriota (family Kineosporiaceae)

Flavonoids
Isoflavonoids
Caffeine

High second
metabolites

Proteobacteria (gena Methylocystis,
Magnetospirillum and Aeromonas)

Myxococcota (genus Anaeromyxobacter)

Bacteria
enrichment

High-
abundance
genes

mcrA, AOA, AOB, nirS and nirk

pmoA and nosZ

Difference in CH, and N,O emissions between rice
varieties

Ding 2022. Effect of microbial community structures and metabolite profile on greenhouse gas
emissions in rice varieties. Env. Poll. 356

High-
abundance
genes



Summary

e Rice cultivars differ in methane emissions and can be
part of the mitigation process

 Mapping populations serve as a means of identifying i
traits and QTL that are related to GHGE that may help in | ¢
developing new low emitting varieties

e Results demonstrate that different genotypes can
influence the soil microbiome that impact GHGE

e Considering the complex G x E X M interactions affecting
GHGE, screening for varieties that support lower
methanogen and higher methanotroph abundances,
may be a means of a high throughput selection method
valuable for breeding low GHGE rice
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