

Alliance

Potential of rice cultivars to mitigate methane emissions in LAC, using genetics for mitigation

Maria Fernanda Alvarez PhD. genética y fitomejoramiento <u>m.f.alvarez@cgiar.org</u>

Bioversity International and the International Center for Tropical Agriculture (CIAT) are CGIAR Research Centers. CGIAR is a global research partnership for a food-secure future.

CGIA

Paul A. S. Soremi^{1,2,3}, Ngonidzashe Chirinda^{1,4}, Eduardo Graterol², Maria F. Alvarez¹

¹International Center for Tropical Agriculture (CIAT), Palmira, Colombia.

²Latin American Fund for Irrigated Rice (FLAR), International Center for Tropical Agriculture, Palmira, Colombia.
³Department of Plant Physiology and Crop Production, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
⁴AgroBioSciences (AgBS), Agricultural Innovations and Technology Transfer Centre (AITTC), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco

This research was supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and the Global Research Alliance on Agricultural Greenhouse Gases (GRA) through their CLIFF-GRADS program. CCAFS is carried out with support from CGIAR Trust Fund

Rice in LAC

- High per/capita consumption up to 70 Kg/years
- Increasing urban population
- Rural poverty up to 45%
- The rice production and yield tripled in last 50 years
- 80% of the planted are under DRS

COVID-19 impact in LAC

ARTICLE

Check for updates

https://doi.org/10.1038/s41467-021-27424-z OPEN

Sustainable intensification for a larger global rice bowl

Shen Yuan¹, Bruce A. Linquist², Lloyd T. Wilson³, Kenneth G. Cassman⁶, Alexander M. Stuart⁶, Valerien Pede⁵, Berta Miro⁶, Kazuki Saito⁶, Nurwulan Agustiani⁷, Vina Eka Aristya⁸, Leonardus Y. Krisnadi⁹, Alencar Junior Zanon¹⁰, Alexandre Bryan Heinemann⁶, Gonzalo Carracelas⁶, Nataraja Subash¹³, Pothula S. Brahmanand¹⁴, Tao Li¹⁵, Shaobing Peng⁶, A Patricio Grassini⁶, ⁴

- 30% irrigation
- 14% fertilizers
- 10% pesticides

- 30% methane emission
- 10% nitrous oxide emission
- Third crop in labor requirement

CH₄ and N₂O Emissions from Rice Cultivation: Emissions Reduction Potential in 2030

Assuming full implementation of current technology, emissions in the rice cultivation sector could be reduced by up to 200 MtCO₂e in 2030. This accounts for 4% of the 4,615 MtCO₂e in global reduction potential for non-CO₂ greenhouse gases in 2030.

Greenhouse Gases: 2010-2030.

How to diminish the greenhouse gases emissions in Rice crop Practices Genetics

- Minimum tillage
- Rotation
- Better water management (AWD)
- NUE , low N input
- Carbon sequestration
- Others ...

- Different varieties have different emission rate
- Yield and emission...
- Traits that are correlated with a higher amount of emissions (aerenchyma)

Do different varieties have different rates of emissions?

Are there any traits from rice correlated to CH4 emissions

Methodology

- Field experiment set up at the CIAT campus, in Colombia
- 2. Randomized complete block design
- 3. Four replicates

4. 4 rice genotypes: 2 hybrids1 breeding line, 1 variety

Fertilization Hybrids - 200 kg N ha-1 Varieties - 180 kg N ha-1

Alliance

GHG monitoring

- Closed static chamber technique.
- Gas samples were collected 25 times during the rice-growing season

Rice traits

- Baseline soil chemical properties
- Leaf area index
- Aboveground dry biomass
- Plant height
- Tillers
- Root properties (length, volume, surface area, biomass)

*Test of correlation between the trait and fluxes of emissions

Genotype	Root length at physiological maturity (cm)	Root volume at physiological maturity (cm ³)	Root surface area at physiological maturity (cm ²)
Commercial variety	2763 ^a	6.4 ^a	465 ^a
Breeding line	3567 ^a	8.4 ^{ab}	607 ^{ab}
Hybrid 1	2908 ^a	8.1 ^a	540 ^a
Hybrid 2	3826 ^b	11.0 ^b	725 ^b

Root length vs methane emissions

Alliance

14

Biomass

Emissions

Emission and yield

Genotype	Cumulative methane (mg CH ₄ m ⁻²)	Emission intensityintensi ty (mg CH ₄ kg ⁻¹ dry matter)	Grain yield (kg ha ⁻¹)	Index (mg CH ₄ kg ⁻¹
Commercial				6,84
variety	4338a	0.73a	6333a	
Breeding line				7,73
	4482a	0.75a	5801a	
Hybrid 1	5761b	0.65a	8607b	6,69
Hybrid 2	7068c	1.19a	8647b	8,17

Preliminary findings

- CH₄ emissions follow the same trend as plant biomass accumulation
- Varieties generally showed lower CH₄ emissions compared to hybrids
- Yet, hybrids yielded more that varieties and at least one process less emission per Kg of produced rice
- It appears that not all rice is created equal and the potential to exploit genotypic variation to achieve low emitting rice exists

Rice program at CIAT

We are a multidisciplinary team aligned to: Ensure calorie intake for the world rural and urban communities, with a healthier, abundant and nutritious rice with sustainable and climate friendly practices. Contributing to a decent work and economic growth through the reinforcement of rice value chain.

To achieve sustainability, we need to reduce the emissions per Kg of paddy rice, with agricultural practices and **genetics**

Thank you!

Author Position

Email

Bioversity International and the International Center for Tropical Agriculture (CIAT) are CGIAR Research Centers. CGIAR is a global research partnership for a food-secure future.