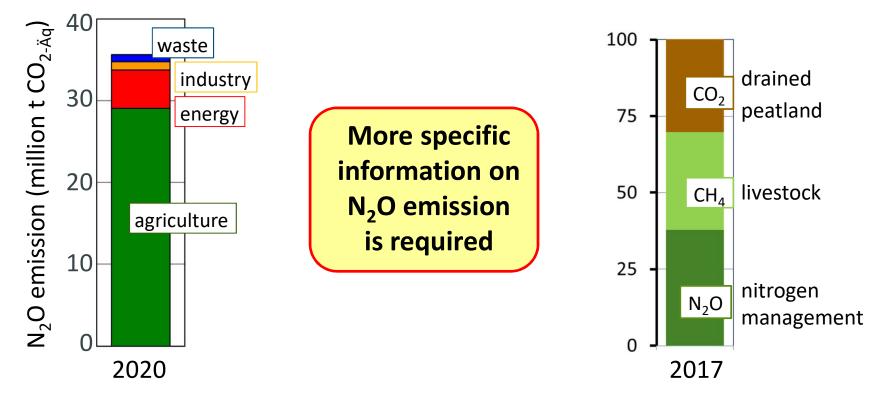


New method of N₂O emission reporting in Germany

Roland Fuß, Gokul Prasad Mathivanan and Heinz Flessa

Thünen Institute of Climate-Smart Agriculture, Germany



N₂O emission in Germany

Total N₂O emission in Germany

Total GHG emission from agriculture with LULUC in Germany

THÜNEN

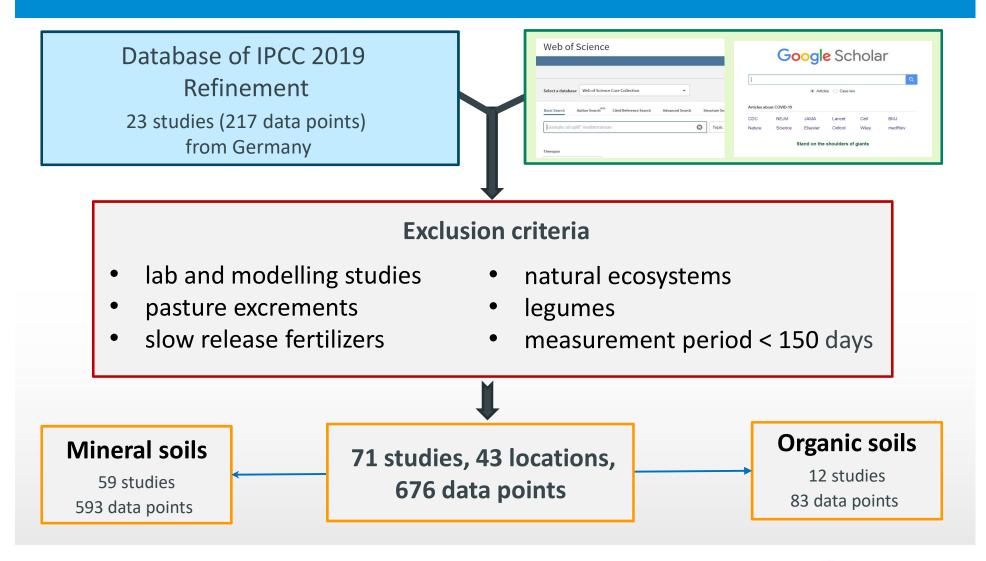
N₂O from agriculture is a key category of GHG emission in Germany

N₂O emission is a main factor of uncertainty in the German GHG reporting

IPCC N₂O emission factors

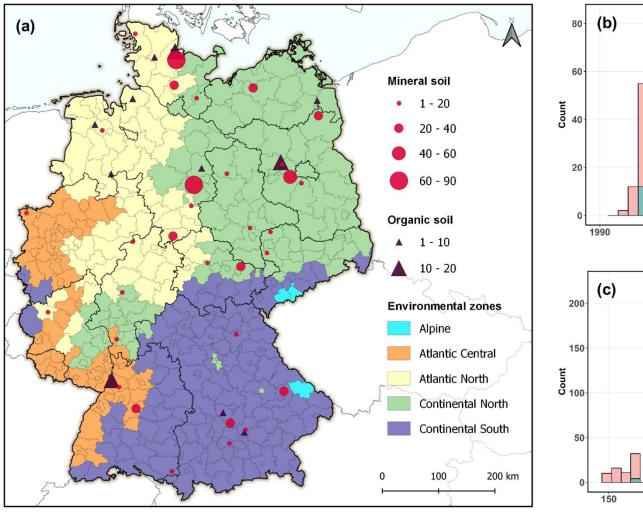
> IPCC 2006 emission factor: $EF_1 = 1 \%$ (0.3 to 3 %) of N input is emitted as N_2O

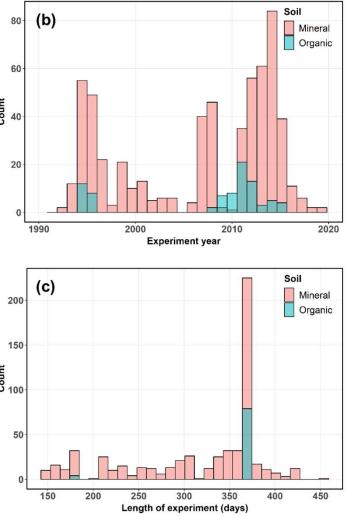
IPCC 2019 refinement of the N₂O emission factor:


- <u>Aggregated EF₁</u>: 1 % (0.1 to 1.8 %) of N additions from synthetic fertilizer, manure, crop residues, and loss of soil organic matter is emitted as N₂O
- Recommended: <u>Disaggregation of EF₁ (fertilizer type</u>, climate): Synthetic fertiliser input in wet climates: 1.6 % (1.3 to 1.9 %) of N added Other N inputs in wet climates (e.g. manure): 0.6 % (0.1 to 1.1 %) of N added All N inputs in dry climates: 0.5 % (0 to 1.1 %) of N added is emitted as N₂O

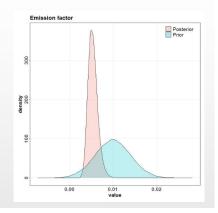
Objective: To derive specific, stratified N₂O emission factors for Germany

• Approach used: meta-analysis of N₂O field studies in Germany




N₂O emission data in Germany

N₂O emission: field data in Germany



Modelling N₂O emission factors

- Separate modelling for mineral and organic soils
- Modelling N₂O emission as linear fuction of N application rates (Bowman, 1996)
- Using a generalised linear mixed model (GLMM) with gamma distribution to account for varying levels of skewness of N₂O emission data. The mixed-effects model approach was used to account for correlations within location clusters and within measurement years.
- Bayesian modelling with prior and posterior probability distribution
 - Different models were tested with a combination potential predictors: e.g.: N input and duration; N input and duration and fertilizer type; N input and duration and environmental zone (location and year remained as random effects)
 - Goodness of the fit and predictive power were analysed by ${\rm RMSE}_{\rm fit}$ and ${\rm RMSE}_{\rm CV}$

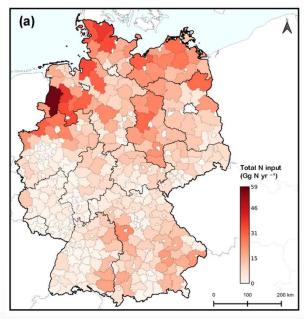
Best models for estimating direct N₂O emission

Mineral soils

- Predictors:
 - N input
 - duration of measurements
 - environmental zone

Climate zone	Emission Factor (EF)
Atlantic North (North-West Germany)	0.49% (0.26-0.78%)
Continental North (North-East Germany)	0.39% (0.17-0.66%)
Atlantic Central (South-West Germany)	0.72% (0.37-1.08%)
Continental South (South-East Germany)	0.88% (0.38-1.43%)

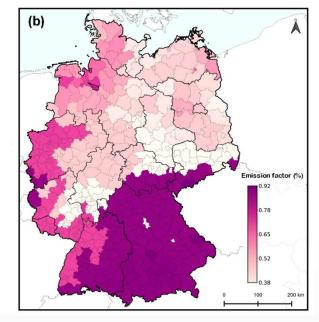
 No evidence that emission factors of synthetic fertilizers and manure differ


Organic soils

- Predictors:
 - N input
 - duration of measurements
- Emission factor:
 - 1.01% (0.39-1.65%)
 - emissions from mineralization of peat are not included
- N₂O emission per unit
 N input is higher for organic soils than mineral soils

Model application at the district scale of Germany

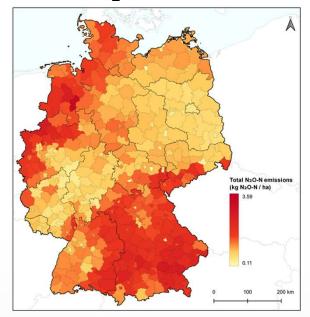
N input per district



- Synthetic N fertilizers
- Manure, digestates, sludge
- Crop residues

Not included:

 N from: pasture excrements, soil organic matter decrease



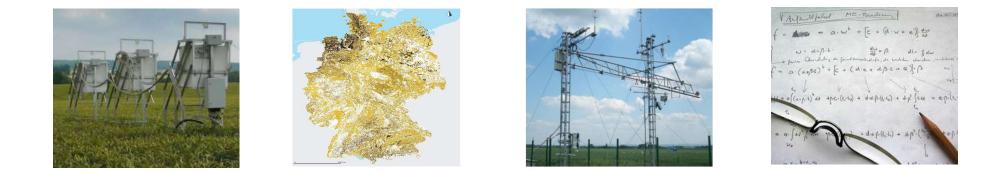
Depend mainly on

- Environmental zone
- Abundance of farmed organic soils

Mean N₂O emission ha⁻¹

Depend mainly on

- Intensity of fertilization
- Environmental zone
- Abundance of farmed organic soils



Conclusion

On average 0.6 % (0.4-0.9%) of N applied with fertilizers is emitted as N₂O \rightarrow new implied N₂O emission factor for Germany for direct N₂O emission

- IPCC 2019 emission factor: 1.0 % (0.1-1,8%)
- There is no evidence for a significant effect of fertilizer type (synthetic fertilizers versus manures) on the N₂O emission factor in Germany
- \succ Key points when working on Tier 2/3 methodologies for N₂O emission reporting:
 - Representative data on N₂O emission (networking with neighbouring countries)
 - Reliable activity data back to 1990 (N inputs)
 - Data on most important predictors influencing emission rates (climate, soil, ...)
 - Peer reviewed publication of the proposed method

Thank thank you for your attention

THÜNEN Institute of Climate-Smart Agriculture Germany

