GLOBAL RESEARCH ALLIANCE

ON AGRICULTURAL GREENHOUSE GASES

Flagship Project tittle: Technical guidelines to develop feed additives to reduce enteric methane

Coordinators: David Yáñez-Ruiz (CSIC) & André Bannink (WUR)

Postdoc: Florencia García

fgarcia@agro.unc.edu.ar

1st September 2022 – 2 years

Background:

- Increasing interest in developing feed additives to reduce enteric CH₄ emissions worldwide
- Feed additives: Extensive research effort over the last decades that has not resulted in many additives in the market (Hegarty et al., 2021)

=	Google Scholar	feed additive methane emissions	۶.
•	Articles	About 41,200 results (0.10 sec)	
	US National Library of Medicini National Institutes of Health National Institutes of Health Acticle attributes Associated Data Author manuscripts Digitized back issues MEDLINE journals Open access	PMC addtives methane Create alert Journal List Display Settings: + Summary, 20 per page, PMC Full-Text Search Results Items: 1 to 20 of 5174	

GLOBAI

ON AGRICULTURAL GREENHOUSE GASES

An evaluation of evidence for efficacy and applicability of methane inhibiting feed additives for livestock

November 2021

ON AGRICULTURAL GREENHOUSE GASES

GLOBAL RESEARCH

Objectives of the project

Facilitate the development and use of feed additives to reduce enteric methane emissions

GLOBAL RESEAR

ON AGRICULTURAL GREENHOUSE GASES

Feed and Nutrition Network (LRG):

Animal Feed Science and Technology iournal homepage; www.elsevier.com/locate/anifeedsci

Contents lists available at ScienceDirect

Review article

Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants

K.J. Hammond^a, L.A. Crompton^a, A. Bannink^b, J. Dijkstra^c, D.R. Yáñez-Ruiz^d, P. O'Kiely^e, E. Kebreab^f, M.A. Eugène^g, Z. Yu^h, K.J. Shingfield^{i,j}, A. Schwarm^k, A.N. Hristov¹, C.K. Reynolds^{a,*}

Review article Design, implementation and interpretation of *in vitro* batch

culture experiments to assess enteric methane mitigation in ruminants—a review

Yáñez-Ruiz D.R.^{a,*}, Bannink A.^b, Dijkstra J.^c, Kebreab E.^d, Morgavi D.P.^e, O'Kiely P.^f, Reynolds C.K.^g, Schwarm A.^h, Shingfield K.J.^{i,j}, Yu Z.^k, Hristov A.N.¹

J. Dairy Sci. 101:6655-6674 https://doi.org/10.3168/jds.2017-13536

© 2018, THE AUTHORS. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models¹

CrossMark

A. N. Hristov,*² E. Kebreab,† M. Niu,† J. Oh,* A. Bannink,‡ A. R. Bayat,§ T. M. Boland,# A. F. Brito, II D. P. Casper,¶ L. A. Crompton,\$ J. Dijkstra,€ M. Eugène,¥ P. C. Garnsworthy,** N. Haque,†† A. L. F. Hellwing, + P. Huhtanen, §§ M. Kreuzer,## B. Kuhla, III P. Lund, + J. Madsen, + C. Martin, ¥ P. J. Moate,¶¶ S. Muetzel,\$\$ C. Muñoz,€€ N. Peiren,¥¥ J. M. Powell,*** C. K. Revnolds,\$ A. Schwarm,## K. J. Shingfield, ttt³ T. M. Storlien, ttt M. R. Weisbjerg, tt D. R. Yáñez-Ruiz, §§§ and Z. Yu###

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review

Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems

Latifa Ouatahar ^{a,b,*}, André Bannink ^c, Gary Lanigan ^d, Barbara Amon ^{b,e}

Received: 10 August 2017 Revised: 15 December 2017 Accepted: 29 January 2018 DOI: 10.1111/gcb.14094

PRIMARY RESEARCH ARTICLE

WILEY Global Change Biology

Prediction of enteric methane production, vield, and intensity in dairy cattle using an intercontinental database

Mutian Niu¹ | Ermias Kebreab¹ | Alexander N. Hristov² | Joonpyo Oh² | Claudia Arndt³ | André Bannink⁴ | Ali R. Bayat⁵ | André F. Brito⁶ | Tommy Boland⁷ David Casper⁸ | Les A. Crompton⁹ | Jan Dijkstra¹⁰ | Maguy A. Eugène¹¹ | Phil C. Garnsworthy¹² | Md Najmul Haque¹³ | Anne L. F. Hellwing¹⁴ | Pekka Huhtanen¹⁵ | Michael Kreuzer¹⁶ | Bjoern Kuhla¹⁷ | Peter Lund¹⁴ | Jørgen Madsen¹³ | Cécile Martin¹¹ | Shelby C. McClelland¹⁸ | Mark McGee¹⁹ | Peter J. Moate²⁰ | Stefan Muetzel²¹ | Camila Muñoz²² | Padraig O'Kielv¹⁹ | Nico Peiren²³ Christopher K. Reynolds⁹ | Angela Schwarm¹⁶ | Kevin J. Shingfield²⁴ Tonje M. Storlien²⁵ | Martin R. Weisbjerg¹⁴ | David R. Yáñez-Ruiz²⁶ | Zhongtang Yu²⁷

journal homepage: www.elsevier.com/locate/agee

Prediction of enteric methane production, yield and intensity of beef cattle using an intercontinental database

Henk J. van Lingen^{a,*}, Mutian Niu^{a,b}, Ermias Kebreab^a, Sebastião C. Valadares Filho^c, John A. Rooke^d, Carol-Anne Duthie^d, Angela Schwarm^{e,1}, Michael Kreuzer^e, Phil I. Hynd^f, Mariana Caetano^f, Maguy Eugène⁸, Cécile Martin⁸, Mark McGee^h, Padraig O'Kiely^h, Martin Hünerberg^{1,J}, Tim A. McAllister¹, Telma T. Berchielli^k, Juliana D. Messana^k, Nico Peiren¹, Alex V. Chaves^m, Ed Charmleyⁿ, N. Andy Cole^o, Kristin E. Hales^p, Sang-Suk Lee^q, Alexandre Berndt^r, Christopher K. Reynolds^s, Les A. Crompton^s, Ali-Reza Bayat^t, David R. Yáñez-Ruiz^u, Zhongtang Yu^v, André Bannink^w, Jan Dijkstra^x, David P. Casper^v, Alexander N. Hristov²

Enteric methane mitigation strategies for ruminant livestock systems in the Latin America and Caribbean region: A meta-analysis

888

Guilhermo Francklin de Souza Congio a, b,*, André Bannink e, Olga Lucía Mayorga Mogollón a, Latin America Methane Project Collaborators1, Alexander Nikolov Hristov

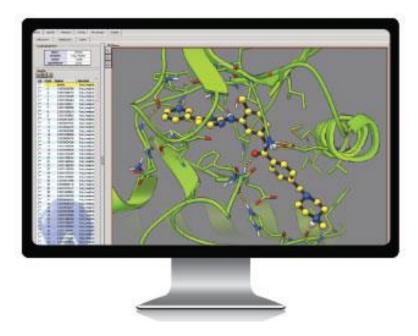
COP27 – 6-18 Nov., Egypt

Brief description of project steps (2 years)

- Define structure and sections of the Technical guidelines
- Allocate contributions for each section to participating partners (not only FNN members)
- Working groups
- Data gathering, processing, discussion & writing
- Deliver technical guidelines and position scientific paper(s) on feed additives

Structure of Guidelines

- Block 1: Experimental / Testing
 - <u>Chapter 1</u>: Identification/screening of candidates
 - <u>Chapter 2</u>: Testing at animal level
 - <u>Chapter 3</u>: Uncovering modes of action
- Block 2: Modeling/C accounting /Implementation
 - <u>Chapter 4</u>: Testing at farm level
 - <u>Chapter 5</u>: Registration and accounting


GLOBAL RESEARCH ALLIANCE

Chapter 1: Identification and screening of new bioactive compounds

In silico screening/chemical modeling

In vitro screening/ Dose selection / Range of substrates

Chemical characterization - Formulation seeking stability

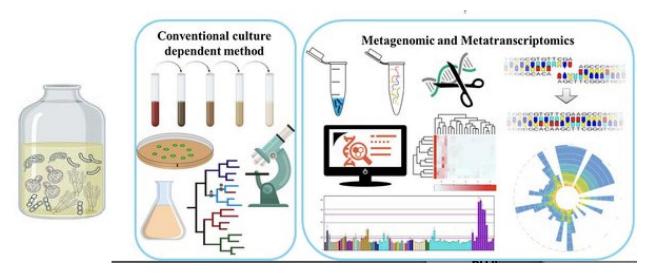
Chapter 2: Testing at animal level

Transforming doses at different levels (diet / rumen volume)

Short and long term *in vivo* experiments (Dairy/Beef- Confined/Grazing) // Statistical designs

Early life interventions

Other aspects: Delivery methods, Persistency/residual effects, animal health



Chapter 3: Uncovering their mechanisms of action

Microbial pure culture assessments/Effect on the rumen microbiome

Mechanisms of methanogenesis inhibition and their biological consequences in other digestive processes

Chapter 4: Testing at farm level

Assessing the impact of mitigation though modeling at farm level (LCA)/Farm level cost assessment

Proposed structure of the Guidelines

Chapter 5: Registration and accounting

Regulatory contexts around the world

Linking the impact at farm level to their impact at regional and/or national mitigation targets

Adoption barriers for the use of feed additives and strategies to overcome those limitations.

How to scale-up their use?

Ministry for Primary Industries Manatū Ahu Matua

Australian Government

ON AGRICULTURAL GREENHOUS

Australian Pesticides and Veterinary Medicines Authority

Globai

Project conceived to help both academy and industry

Ambitious, wide range of expertise

Open for new collaborators

GLOBAL RESEARCH ALLIANCE

ON AGRICULTURAL GREENHOUSE GASES

How can we collaborate and join our efforts?

Thank you!

Florencia Garcia fgarcia@agro.unc.edu.ar