# GLOBAL RESEARCH ALLIANCE

ON AGRICULTURAL GREENHOUSE GASES

David Yáñez-Ruiz (CSIC, Spain), André Bannink (WUR, Netherlands), Florencia García (Argentina)



#### GLOBAL RESEARCH ALLIANCE

ON AGRICULTURAL GREENHOUSE GASES

## Background

Feed additives are a valuable strategy to reduce methane emissions from ruminants



|                             | MITIGATION STRATEGY                                | POTEN                                                                    | TIAL EMISS                | IONS REDU                                                                         | ICTION                       |
|-----------------------------|----------------------------------------------------|--------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------|------------------------------|
| Product-Based<br>Reductions | INCREASING FEEDING LEVEL                           |                                                                          | CH4IM<br>CH4IG            | -17%<br>No Data                                                                   |                              |
|                             | DECREASING GRASS MATURITY                          |                                                                          | CH4IM<br>CH4IG            | -13%<br>No Data                                                                   |                              |
|                             | DECREASING DIETARY FORAGE-TO-<br>CONCENTRATE RATIO | CH <sub>4</sub> I <sub>M</sub> -9%<br>CH <sub>4</sub> I <sub>G</sub> -9% |                           |                                                                                   |                              |
| =                           | G                                                  |                                                                          |                           | Daily CH4                                                                         |                              |
|                             |                                                    |                                                                          | -32%                      |                                                                                   | -35%                         |
| 2                           | <b>U</b> CH₄INHIBITORS                             | CH <sub>4</sub> I <sub>M</sub><br>CH <sub>4</sub> I <sub>G</sub>         | No Data                   | CH <sub>4</sub> Y                                                                 | -34%                         |
| ctions                      | CH₄INHIBITORS  2 TANNIFEROUS FORAGES               | CH <sub>4</sub> I <sub>G</sub>                                           | No Data                   | CH <sub>4</sub> Y Daily CH <sub>4</sub>                                           | -34%<br>-12%                 |
| Reductions                  |                                                    | CH <sub>4</sub> I <sub>G</sub>                                           | No Data                   | CH <sub>4</sub> Y                                                                 | -34%                         |
| Absolute Reductions         | 2 TANNIFEROUS FORAGES                              | CH4IG<br>CH4IM<br>CH4IG<br>CH4IM                                         | No Data -18% No Data -13% | CH <sub>4</sub> Y  Daily CH <sub>4</sub> CH <sub>4</sub> Y  Daily CH <sub>4</sub> | -34%<br>-12%<br>-10%<br>-17% |

### Worldwide:

- Increasing interest in developing feed additives
- Extensive research effort over the last decades ....BUT few additives available in the market

An evaluation of evidence for efficacy and applicability of methane inhibiting feed additives for livestock

November 2021





 Facilitate the development and use of feed additives to reduce enteric methane emissions

Technical guidelines and protocols on good practice on how to develop and test feed additives, as well as for accounting for the effect of using this mitigation strategy

 Improve academic and industry capability to develop feed additives and contribute to efficacy assessment

Global network of experts to share knowledge and create detailed guidance to enable the livestock sector to collaboratively harness the potential that feed additives offer

## Flagship Project Members

#### 110 Members:

**Region** (n° Members)

Africa (1)

Asia (2)

Europe (44)

Latin America (32)

North America (12)

Oceania (19)

From 27 countries

#### Parteners:

MiLCA Project, EDF, Cornell University, UC Davis





### Activities/Results To Date

- Outline the structure of the Technical Guidelines (November 2022)
- Define Working Groups (December 2022)
- Invite members Self allocation into WGs (Dec 2022 Feb 2023)
- Identify and invite WG leaders (Feb April 2023)

| Working group                                                                             | Leaders                                                  |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| WG1 - Identification of new bioactive compounds                                           | Evert Duin (United States) + Zoey Durmic (Australia)     |  |  |
| WG 2. Testing at animal level (in vivo assessments)                                       | Alex Hristov (United States) + Peter Lund (Denmark)      |  |  |
| WG 3. Modelling (animal, farm)  Jan Dijkstra (The Netherlands) + Ermias Kebreab (United S |                                                          |  |  |
| WG 4. Uncovering the modes of action                                                      | Alejandro Belanche (Spain) + Emilio Ungerfeld (Chile)    |  |  |
| WG 5. Registration and regulation of feed additives                                       | Juan Tricarico (United States)                           |  |  |
| WG 6. Accounting at Farm, Regional, National or Global level                              | Agustín del Prado (Spain) + Ronaldo Vibart (New Zealand) |  |  |



### Guidelines structure

### First drafts by the end of 2023

| Working group                                                                                                     | Topics to cover                                                                                                  |  |  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| WG1 - Identification of new bioactive compounds                                                                   | In vitro, in silico screening, dosage in vitro – in vivo                                                         |  |  |
| WG 2. Testing at animal level (in vivo assessments)                                                               | Experimental design, animal species, measuring techniques, adaptation periods, delivery methods, grazing systems |  |  |
| G 3. Modelling (animal, farm)  Metanalysis for assessing effectiveness, modelling at rumen ar animal, farm levels |                                                                                                                  |  |  |
| WG 4. Uncovering the modes of action                                                                              | Assessing the 4 main mechanisms of action, molecular/culturomics techniques, H2 dynamics, resistance             |  |  |
| WG 5. Registration and regulation of feed additives                                                               | Regulatory contexts around the world                                                                             |  |  |
| WG 6. Accounting at Farm, Regional, National or Global level                                                      | Carbon markets, inventories, monitoring/reporting/verification (MRV)                                             |  |  |

# GLOBAL RESEARCH ALLIANCE

ON AGRICULTURAL GREENHOUSE GASES

David Yáñez-Ruiz (CSIC, Spain), André Bannink (WUR, Netherlands), Florencia García (ARG)

