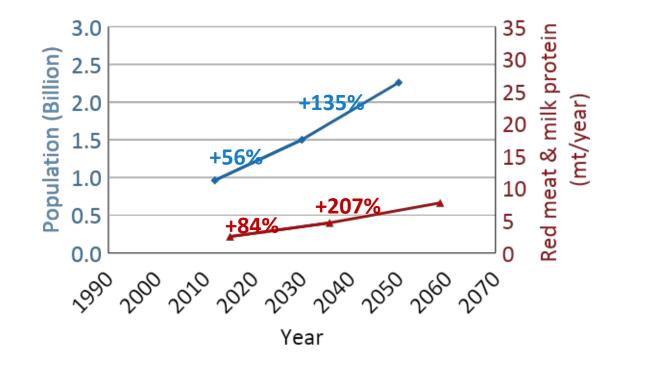
African livestock GHG research, including barriers to uptake of technology (or required incentives)

Claudia Arndt, PhD


https://mazingira.ilri.org/

Senior Scientist & Team Lead of the Mazingira Centre International Livestock Research Institute (ILRI)

LRG Annual Meeting Lyon, France 1st September 2023

Livestock Demand in Africa Projected Growth in Population and Animal Protein Demand in

Red meat & milk protein (g/capita/d)	

2010	2030	2050
7.2	8.5	9.4
+15%		+10%

2

MT: Million metric tons Source: Modified after Henchion et al., 2021 and FAO.

Prevalent Livestock Systems

Smallholder systems

Humid & Sub-humid areas

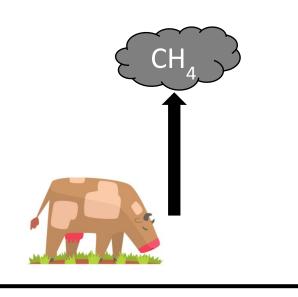
- Own 80% of arable land (<10 ha)
- Small livestock holdings (<10 cattle)
- Mixed cattle herd composition (~45% adult females)
- Milk productivity: ~4 liters/day

Sources: Lowder et al., 2016; Ndung'u et al., 2022; Rahimi et al., 2022; Coppock et al., 1986

Pastoralist/agropastoral systems

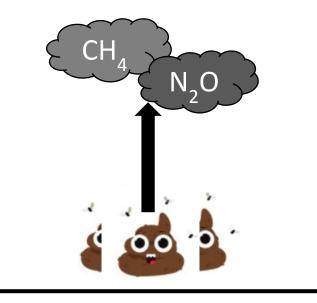
Semi-Arid & Arid areas

- Larger, multi-species herds
 - 48% cattle
 - 46% small ruminants
 - 6% camels
- Milk productivity: <2 liters/day

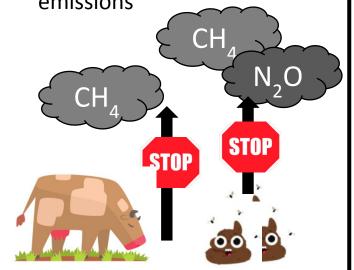


Sources: Lowder et al., 2016; Ndung'u et al., 2022; Rahimi et al., 2022; Coppock et al., 1986

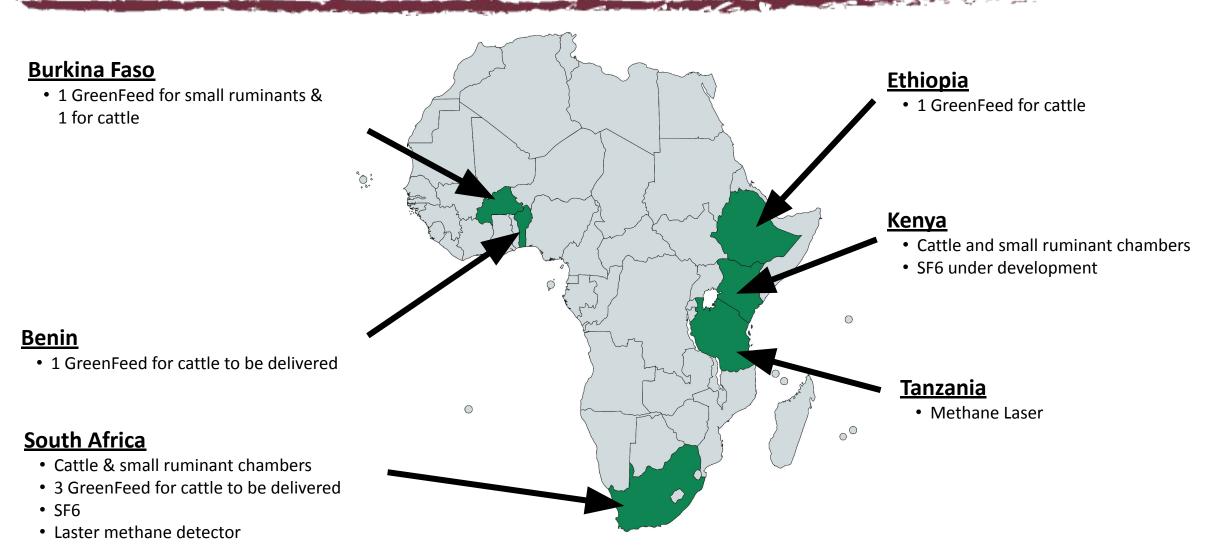
Research on GHG Emissions From Livestock in Sub-Saharan Africa is Limited


Enteric CH₄ Emissions

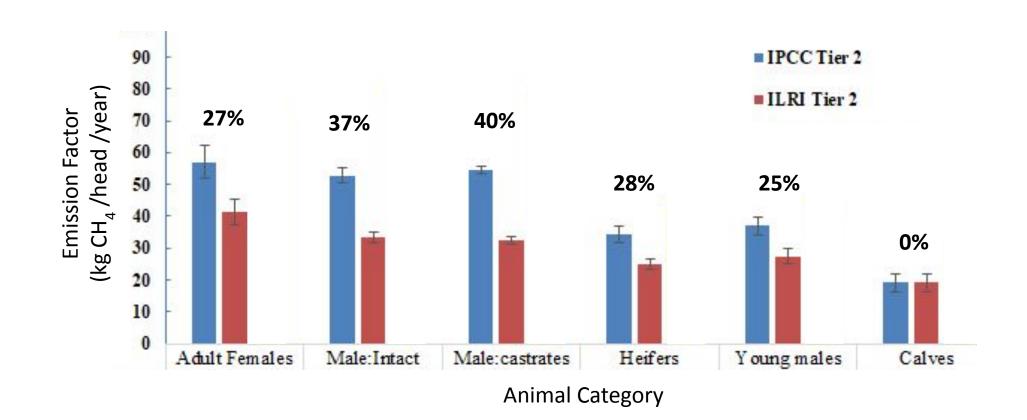
- 14 studies for cattle
- 6 studies for small ruminants


Manure GHG Emissions

- 6 studies for cattle manure
- No studies for small ruminants


Mitigation

- 5 cattle and 2 sheep studies on enteric CH₄ emissions
- No studies on manure GHG emissions



Locations With Equipment to Measure Enteric Methane

Enteric CH₄ Emission Factors are Different Between Tier 2 Models

Error bars are 95% confidence interval Source: Balcha et al. manuscript submitted

CGIAR

Mitigate+: Research for Low-Emission Food Systems

Ø

CGIAR

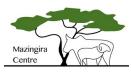
Climate Smart Agricultural (CSA) Practices are important

1. Increased productivity

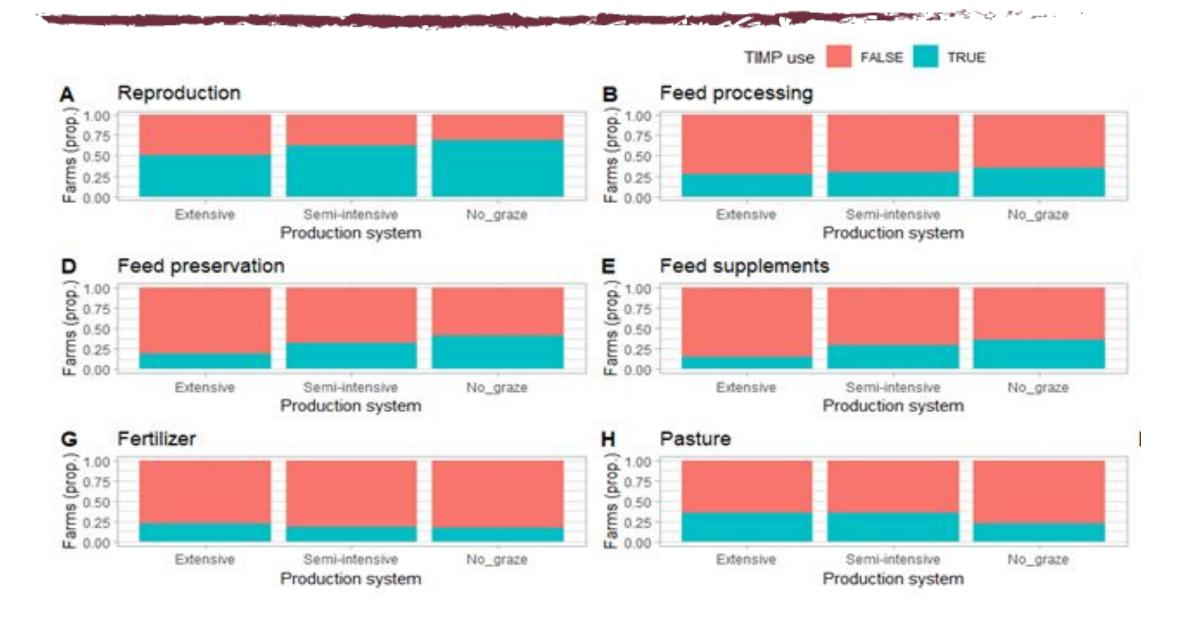
Kenya Climate Smart Agriculture Project (KCSAP)

- 2. Adaptation and resilience to climate change
- 3. Reduced greenhouse gas emissions

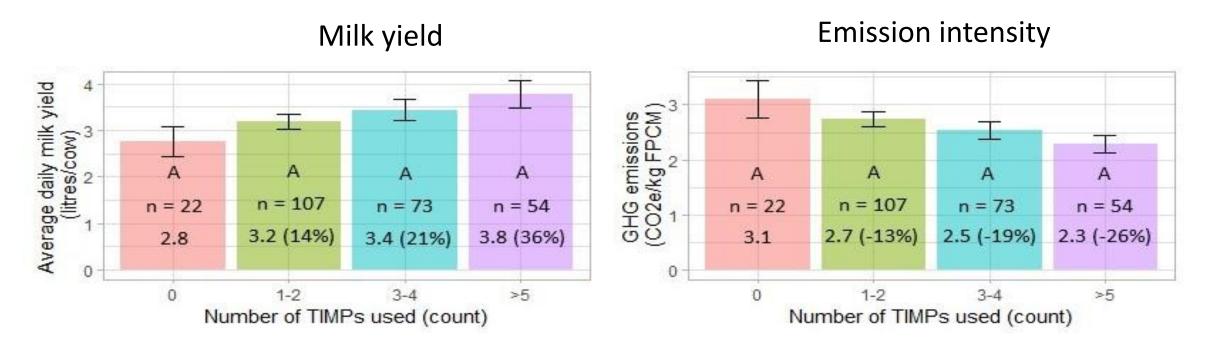
□ Production increases and mitigation potential of CSA practices needs to be measured to determine what CSA practice should be promoted in what production systems



LCSR: Livestock, Climate and System Resilience



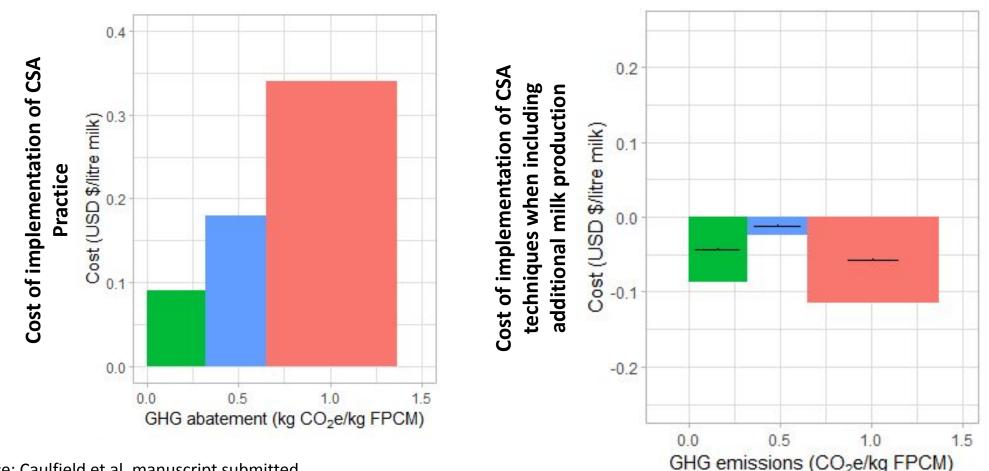
Mitigate+: Research for Low-Emission Food Systems



CSA Adoption Varies By Production System

Effects Of CSA Practices On Production And Emission Intensity By System

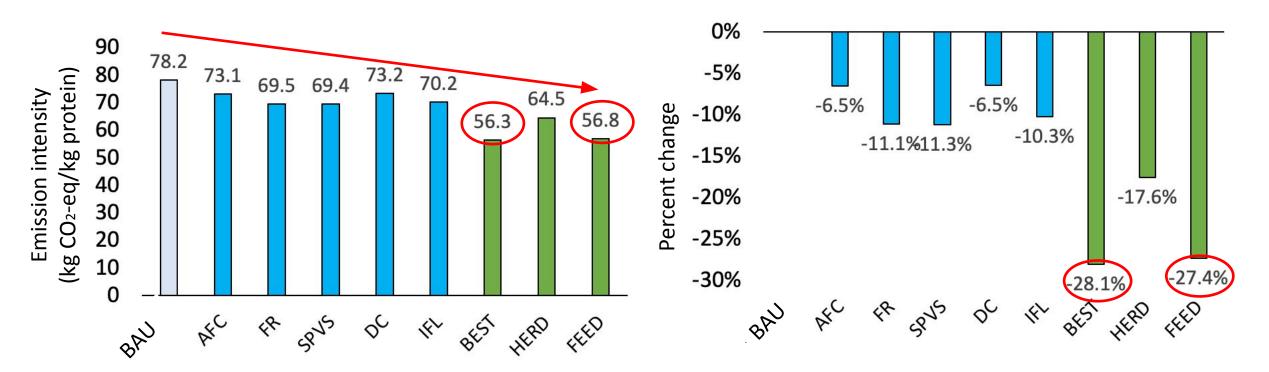
Greatest production and mitigation gains were reached in extensive systems



Source: Caulfield et al. manuscript submitted

Marginal Abatement Cost Curves For The Use Of Different Numbers Of CSA Practices

Upfront investment costs are a potential barrier to CSA adoption

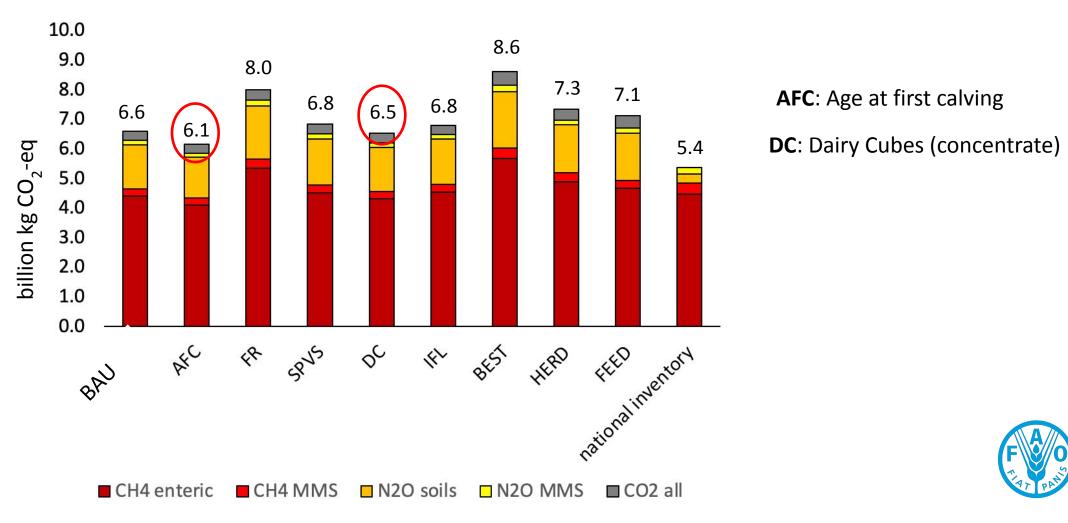


Source: Caulfield et al. manuscript submitted

GLEAM-i Modelling using CSA Practices

• Emission intensities decreased in all scenarios

AFC: Age at first calvingFR: Fertility RateSPVS: Sweet Potato Vine SilageDC: Dairy Cubes (concentrate)


Source: Graham et al. under development

IFL: Improved Feeding Level
SPVS: Sweet Potato Vine Silage
BEST BET (FR + SPVS + IFL)
HERD (AFC + FR)
FEED (SPVS + DC + IFL)

Absolute emissions

• Absolute emissions went up in most scenarios, except AFC and DC

Mazingi Centre N₂O emission factors lower than IPCC Tier 1 default for solid storage (2019 refinement)

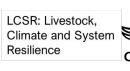
□ Importance of regional country-specific EFs that represent the systems

- Manure from well fed cattle contains more N and has a lower C:N ratio
 Feeding cattle well improves the manures fertilizer value
 Greater N₂O emissions
- No difference in manure chemistry between grass diets

Source: Leitner et al., 2021

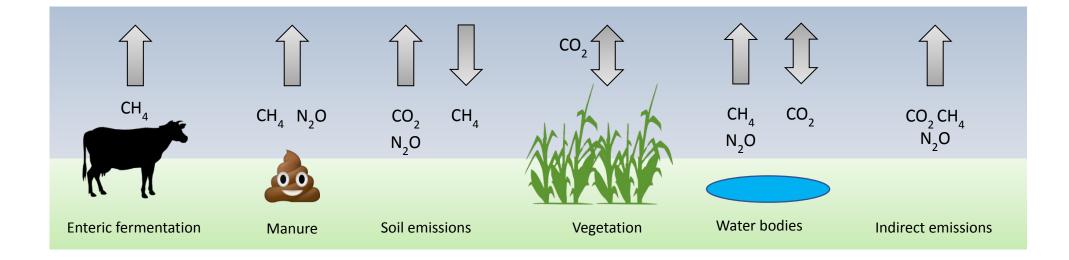
African Biogasdigester Component (ABC) Program (2022-2025)

 Aims to facilitate the shift in the biodigester market from its pioneering to the expansion phase

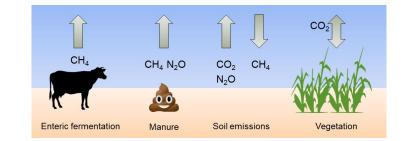


- >80% of rural households use wood or charcoal for fires in Kenya
 Biogasdigesters can reduce deforestation
- 2 improved breed/4 local cattle breeds provide enough manure for a 6-8 m³ farm-scale digesters
 - 4-5 hours of cooking/day
 - Saves 5-8 tCO₂e/year in deforestation (3-5 tons of dry wood)
 - Potential for 18.5 million farm-scale digesters in Africa
 6 tCO₂e mitigated * 18.5 million digesters = 100 million tCO2e/year

Ministry for Primary Industries Manatū Ahu Matua



Mitigate+: Research for Low-Emission Food Systems

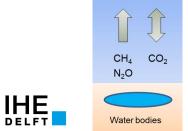

GHG emissions from rangelands – sources and sinks

and the second second second

Ecosystem carbon exchange using Eddy Covariance (EC) towers

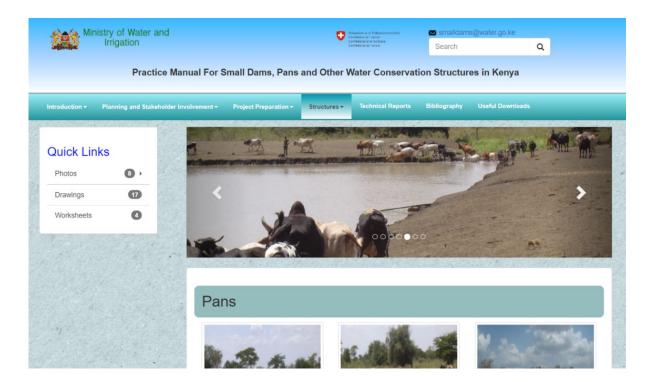
Eddy tower at Kapiti Research Station

and the second se

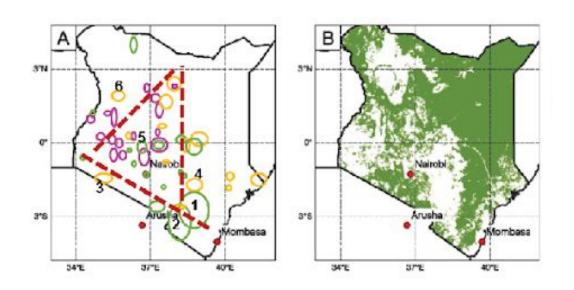


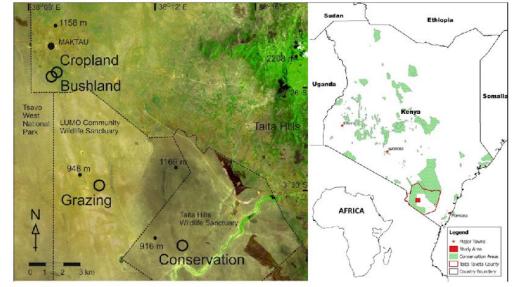
Merbold et al, manuscript in preparation Vincent Odongo, ongoing research Tagliabue et al, manuscript submitted

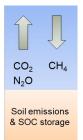
- Ecosystem-scale CO₂, CH₄ and H₂O exchange in savanna & dryland agriculture systems
- Additionally, linked to vegetation activity (monitoring of sun-induced fluorescence, biomass productivity & quality


GHG emissions from water pans

and the second second






Soil GHG emissions and SOC storage

- Published GHG emissions for different land-use systems in the drylands of Southern Kenya
- Impact of livestock & wildlife grazing on soil CO2 flux
- Savanna GHG emissions
- Upcoming measurements on SOC stocks and sequestration potential in grasslands across Kenya across gradients of climate, soil, and degradation

- Current capabilities for monitoring mitigation and adaptation fall short of NDC goals
- Funding allocations for equipment and capacity building are inadequate to address existing gaps
- Development of local equations to estimate emissions is crucial for accurate inventories
- Optimizing production systems can lead to substantial benefits
- CSA practices will be most important to reduce emission intensities and meet rising demands
- A collaborative approach at national and international levels, involving governments, researchers, industry professionals, and farmers, is essential for success

Need for funding and capacity building

- Funds for equipment is needed but are not enough!
- When equipment funding is given, long-term funding should be supplied to maintain the use of infrastructure

 Lots of white elephants in Africa
- Funding schemes need to be put in place to increase human capacity. Progress can be accelerated by collaborations with researchers outside of Africa

SAVE THE DATE!!!

9th GGAA

International Greenhouse Gas & Animal Agriculture Conference

Location

• Nairobi, Kenya

Date

October 2025

Please email us for regular updates: <u>claudia.arndt@cgiar.org</u>

Thank you very much for your attention!

https://mazingira.ilri.org/

Ministry for Primary Industries Manatū Ahu Matua

Deutsche Gesellschaft für Internationale menarbeit (GIZ) GmbH

Better lives through livestock

Claudia Arndt, PhD

claudia.arndt@cgiar.org

LCSR: Livestock, **Climate and System** Resilience

Barriers to the uptake of biodigesters and the way forward

- Barriers to uptake:
 - □ High upfront cost (500 1000 USD)
 - Lack of fiscal incentives, such as subsidies, government grants, and loans
 - Policy and strategic goals for upscaling are not adequately supported
 - Weak coordination between government agencies and other stakeholders
 - Volatile carbon market with high transaction costs and low volume
 - Absence of standards for biodigesters, as well as certification and licensing for installers and enterprises
 - Limited awareness of biodigester benefits and inadequate training for users.
 - Insufficient trained personnel and R&D to foster technology innovation
- Recommendation to increase adoption:
 - Establish financing mechanisms and PPP to upscaling, reduce costs and facilitate installment payments
 - Back policies and strategic goals with robust political support and fostering enabling environments
 - Initiate multi-stakeholder platforms with enhanced coordination
 - Develop localized and robust MRV for the biogas sector to set GHG reduction target, track progress and enhance the integrity of carbon offset
 - □ Encourage carbon credit aggregation
 - Formulate standards and certification processes for biodigester installers
 - □ Raise awareness and offer training to end-users
 - Develop comprehensive training curriculums
 - Enhance R&D to develop affordable and efficient technologies

Climate-Smart Practices – Dairy Value Chain

CSP Category	Individual practice
Reproduction	Artificial insemination (AI) services; Breeding improvements
Feed processing	Chaff cutter; Improved machinery
Fodder improvement	Improved fodder; Fodder establishment; Fodder improvement
Feed preservation	Feeds preservation; Hay; Silage making
Feed supplements	Dairy concentrates; Own farm feed formulations; Feed formulation
Health	East Coast Fever vaccination
Fertilizer	Fertilizer use
Pasture interventions	Improved pasture; Legumes mixed with Kikuyu grass; Pasture management; Pasture establishment and management
Feeding of by-products	Use of maize stovers
Water harvesting	Water harvesting
Stall feeding and housing improvements	Semi-zero grazing unit; Zero grazing unit; Improved housing; Improved dairy unit; Improved housing; Dairy unit improvement
Milk Marketing	Milk marketing

ILKI

Research Hub-Livestock Biogas and Bioslurry Value Chain Development

- Equipped with lab-scale and on-farm biodigesters, biogas analyzers and lab equipment for feedstock, nutrient and pathogen analysis
- Serves as hub for research, capacity building, sample analysis services and scientific exchange in Africa
- Build evidence, tools and methods on GHG mitigation potential and socio-economic, health, gender, and environmental co-benefits of on-farm biodigesters
- Innovate biodigester technologies which are efficient and tailored to the energy needs of farms, various organic wastes and agro-ecologies
- Increase stakeholder capacity to access and utilize robust and localized MRV biogas sector data for GHG inventory, carbon and climate financing, policy-making and guiding best practices
- Promote the expansion of on-farm biodigesters in African nations, increasing from the current 103,044 units to the potential target of 32.9 million households, based on the technical potential determined by available water and manure

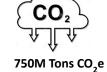
Projects and capacity building-Biogas and Bioslurry

Mitigate+: Research for Low-Emission Food Systems

- On-farm data to determine biogas and biofertilizer production and use, and their socio-economic, health, gender, and environmental co-benefits (ABC & Mitigate+)
- Generating holistic insights of the successes, challenges, and future prospects of biogas programs in Sub-Saharan African countries
- As part of lessons learned from multi-country biogas programs in sub-Saharan regions such as the African Biogas Component (ABC; https://english.rvo.nl/subsidies-programmes/african-biodigester-component-abc) and the African

Biogas Partnership Program (ABPP; https://www.africabiogas.org/)

- ABPP and ABC provides clean energy and biofertilizer to over half a million people
- Optimizing biogas process and technology to maximize biogas and biofertilizer yield and quality
- Generating robust and localized MRV for livestock biogas sector
- Field measurement and self-reported health benefits of biodigesters (indoor air quality, pathogen reduction, diarrheal, occupational health, eye and respiratory infections)
- Currently training 3 PhD students and 2 MSc students
- Future research plan on production of alternative protein from manure, biogas and renewable energy sources



Opportunities, potential and success in African livestock hingas sector

- Anaerobic Biodigester turns livestock manure to biogas and nutrient-rich bioslurry
- Biodigester contributes to 14 outs of 17 SDGs (directly to six of SDGs)
- Development opportunities:
 - **2.8 B people globally (900 M Sub-Saharan Africa)**, globally still cooking using dirty fuels (IRENA, WHO, 2022)
 - Cooking with dirty fuels kills **3.2 M people** each year globally due to indoor air pollution, higher than the combi fatality by HIV AIDS, Malaria and TB.
 - Annual global cost of cooking with dirty fuels is **USD 2.4 T**; **USD 1.4 T** for health; **USD 0.8 T** for women's lost of productivity and **USD 0.2 T** for climate problems
- Technical potential of manure-fed household biodigesters in developing countries to be over 150 M units (Asia 100 M; Africa 32.9 M; Central and Latin America 20 M)

 ♥ ↓↓ ♥

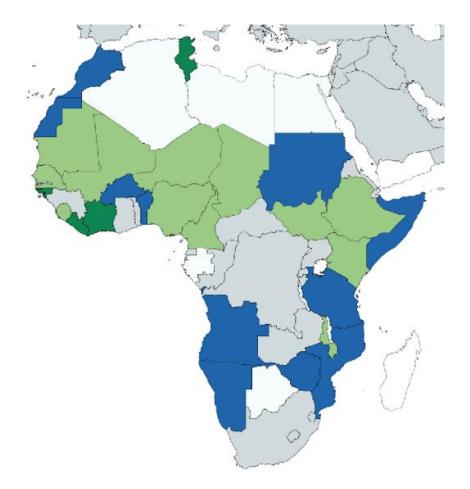
 750M Tons CO₂e

 can be mitigated


219B Hours of cooking on clean energy

900M ha land can be fertilized

- No. of installed biodigester: Africa **103,044**; China & India **40 M**; Other Asian nations **1M**
- Multi-country biogas programs: African Biogas Component (ABC) and the African Biogas Partnership Program (ABPP)- over 0.5 millions benefited



Countries that Include Livestock in New & Updated NDCs

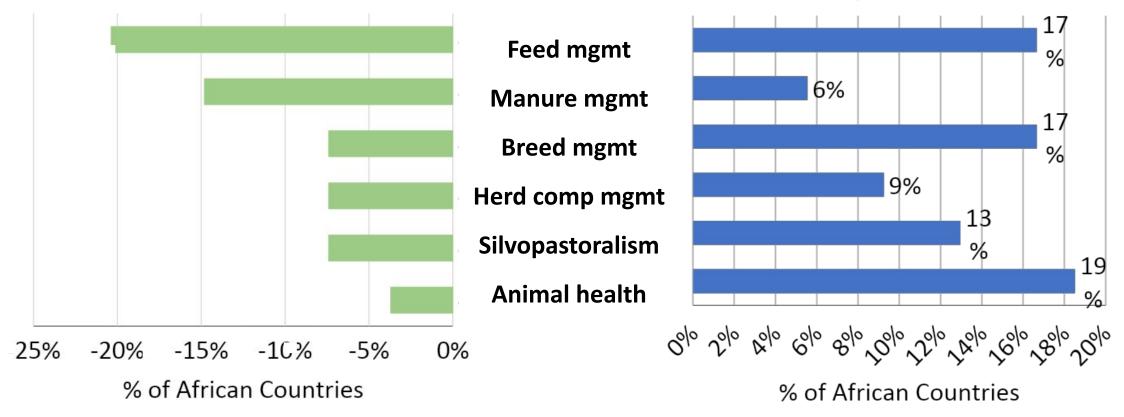
Out of 54 African countries:

- 16 countries include Mitigation & Adaptation measures
 5 countries include livestock Mitigation measures
- 14 countries include Adaptation measures
- 9 countries include no livestock measures
- 10 countries include no new or updated NDCs

Adaptation addresses the impacts of climate change

Mitigation addresses the causes of climate change

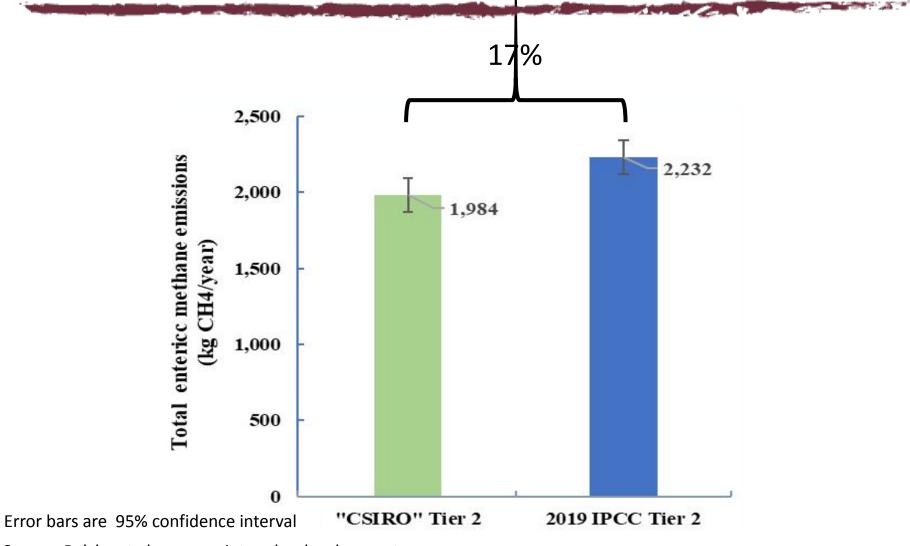
Both approaches are needed in developing countries!



Mitigation & Adaptation Strategies in NDCs of African

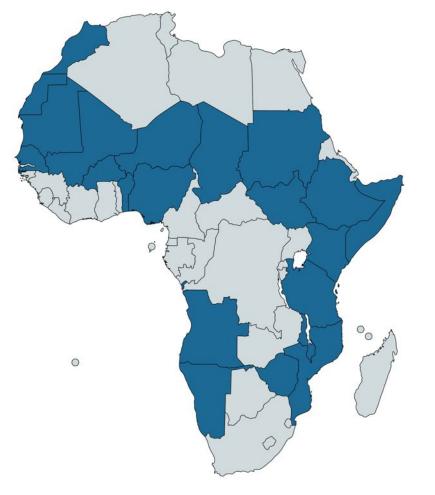
Countries

Mitigation


Adaptation

Source: Rose et al., 2021 and <u>https://ccafs.cgiar.org/index.php/resources/tools/agriculture-in-the-ndcs-data-maps-2021</u>

Preliminary Results - Enteric CH4 Emission Factors For Cattle are Significantly Different Between 2 Models Based on Global North Data



Source: Balcha et al. manuscript under development

No Capacity to Track Livestock Adaptation

Countries with livestock adaptation in their new or updated NDCs

- Currently no international reporting on Adaptation Tracking
 - First instrument designed and nearly completed

Source: Todd Crane (ILRI); perso communication .