BENCHMARKING NUTRIENT CIRCULARITY AT DIFFERENT SCALES: USING A FOOD SYSTEMS PERSPECTIVE

Friday 15 September 2023

Marloes van Loon, Wytse Vonk, Renske Hijbeek, Jouke Oenema, Wim van Dijk, Sjaak Conijn, Marc Spiller, Enrico Roets, Anastasia Papangelou, Martin van Ittersum

Introduction

- Efficient production is key for sustainable agri-food systems in a increasingly populated world
- Increased circularity proposed as primary solution in Europe
- Robust circularity indicators are needed to monitor progress and benchmark management practices of agro-food systems

- Develop circularity indicators
- Benchmark Dutch dairy farms to assess cycling potential and assess implications interventions

Agricultural Systems 207 (2023) 103610

Circularity indicators and their relation with nutrient use efficiency in agriculture and food systems

Marloes P. van Loon^{a,*}, Wytse J. Vonk^a, Renske Hijbeek^a, Martin K. van Ittersum^a, Hein F.M. ten Berge^b

^a Plant Production Systems Group, Wageningen University & Research, Wageningen, the Netherlands
^b Wageningen Plant Research, Wageningen University & Research, Wageningen, the Netherlands

Example circular production system

The indicators

- O/I: product Output / system Input
- Cycle count (CyCt): How many times will a single cohort of input, pass through a full cycle before being dissipated
- Use count (UseCt): How many times a unit of fresh nutrient input passes, on average, through the 'use compartment'

Step 1: Test studies

Van Loon et al. (2023)

Broadbalk, UK: winter wheat. Data source: Rothamsted Research, 2022

De Marke experimental dairy farm Hengelo, the Netherlands. Data source: Oenema (2013) and Aarts (2000)

Flanders, Belgium. Data source: Papangelou & Mathijs, 2021

Step 2: Nutrient cycling Dutch dairy farms

- 27 (front-runner) farms across the Netherlands
- Years 2006 2022, some farms have 2 years of data up to 17 years
- In total 284 unique year and farm combinations 3.0 3.5 Ν Ρ 2.5 3.0 0.2 1.5 1.0 (-) 2.5 2.0 1.5 1.0 0.5 0.5 0.0 0.0 UseCt CyCt CyCt O/I O/I UseCt

8

Dutch dairy farms: Nitrogen Output/Input

- 32% of O/I from cycling
- More variation in cycled flow (42%) compared to direct flow (11%)

Dutch dairy farms: Phosphorus Output/Input

- 45% of O/I from cycling
- More variation in cycled flow (35%) compared to direct flow (11%)

- Assess nutrient cycling, food production and greenhouse gas emissions on farm and agri-food level and the implications of different management practices, technologies and farm configuration interventions
 - Quantify impact of manure processing and feed import on nutrient circularity and GHG emissions at food systems level

marloes.vanloon@wur.nl or in the chat

