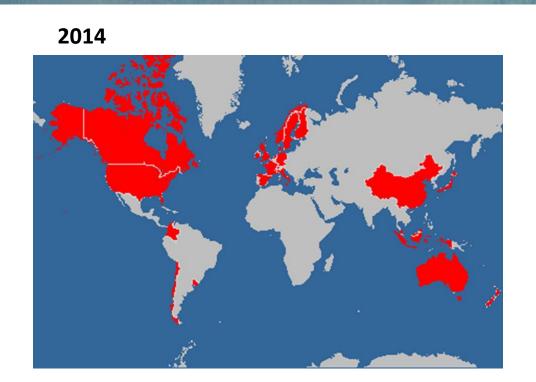


ON AGRICULTURAL GREENHOUSE GASES

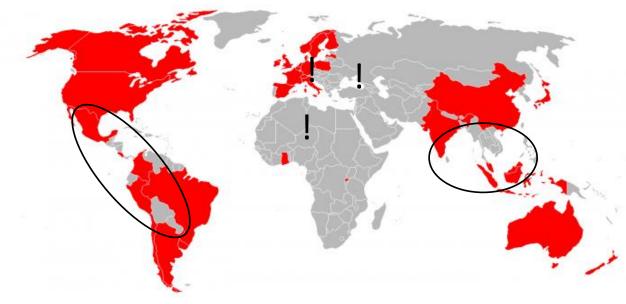
Feed and Nutrition Network (FNN)

David Yanez-Ruiz

2024 Livestock Research Group Meeting Berlin, Germany



Objectives


- 1. Summarise and evaluate the available data on mitigating GHG emissions of ruminants by nutritional means
- 2. Develop sound recommendations on methane mitigation by nutritional means for stakeholders
- 3. Identify gaps in knowledge and focus research on priority issues PROJECTS

Countries represented in FNN

Since 2020 Enteric Methane Flagships for Latin-America/Caribbean & SouthEast Asia + feed additives

• **94 members**: New colleagues joined since January 2024 = 20 from 7 countries (Argentina, Chile, Belgium, Australia, UK, Switzerland and Spain)

FNN Activities/outcomes

ON AGRICULTURAL GREENHOUSE GASES

Contents lists available at ScienceDirect

Animal Feed Science and Technology

journal homepage: www.elsevier.com/locate/anifeedsci

Contents lists available at ScienceDirect

Animal Feed Science and Technology

journal homepage: www.elsevier.com/locate/anifeedsci

Review article

Review of current *in vivo* measurement techniques for quantifying enteric methane emission from ruminants

Review article

Design, implementation and interpretation of *in vitro* batch culture experiments to assess enteric methane mitigation in ruminants_a review

J. Dairy Sci. 101:6655-6674 https://doi.org/10.3168/jds.2017-13536

© 2018, THE AUTHORS. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-i

ELSEVIER

Science of the Total Environment

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/scitotenv

Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models¹

A. N. Hristov,*2 E. Kebreab,† M. Niu,† J. Oh,* A. Bannink,‡ A. R. Bayat,§ T. M. Boland,# A. F. E greenhouse gas emissions models of ruminant systems D. P. Casper,¶ L. A. Crompton,\$ J. Dijkstra,€ M. Eugène,¥ P. C. Garnsworthy,** N. Haque,† A. L. F. Hellwing, ## P. Huhtanen, §§ M. Kreuzer, ## B. Kuhla, IIII P. Lund, ## J. Madsen, †† C. P. J. Moate,¶¶ S. Muetzel,\$\$ C. Muñoz,€€ N. Peiren,¥¥ J. M. Powell,*** C. K. Reynolds,\$ A. K. J. Shingfield, †††3 T. M. Storlien, ‡‡‡ M. R. Weisbjerg, ‡‡ D. R. Yáñez-Ruiz, §§§ and Z. Yuł This is an open access article under the CC BY-NC-ND license (http://creativecommons.

Challenges and opportunities to capture dietary effects in on-farm

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques

A. N. Hristov, 1* A. Bannink, L. A. Crompton, P. Huhtanen, M. Kreuzer, M. Mc C. K. Reynolds,³ A. R. Bayat,⁸ D. R. Yáñez-Ruiz,⁹ J. Dijkstra,¹⁰ E. Kebreab,¹¹ A. K. J. Shingfield, 8,12 and Z. Yu13

Review

Modelling the effect of feeding management on greenhouse gas and nitrogen emissions in cattle farming systems

Latifa Ouatahar a,b,*, André Bannink c, Gary Lanigan d, Barbara Amon b,e

FNN Activities/outcomes

GLOBAL RESEARCH ALLIANCE

ON AGRICULTURAL GREENHOUSE GASES

RESEARCH ARTICLE

SUSTAINABILITY SCIENCE

Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050

Claudia Arndt^{a,1}, Alexander N. Hristov^b, William J. Price^c, Shelby C. McClelland^d, Amalia M. Pelaez^{b,e}, Sergio F. Cueva^b, Joonpyo Oh^b, Jan Dijkstra^e, André Bannink^e, Ali R. Bayat^f, Les A. Crompton^g, Maguy A. Eugène^h, Dolapo Enahoro^a, Ermias Kebreabⁱ, Michael Kreuzer^j, Mark McGee^k, Cécile Martin^h, Charles J. Newbold^l, Christopher K. Reynolds^g, Angela Schwarm^m, Kevin J. Shingfield^{f,2},

ceDirect Clean Production

livestock systems in the

n/locate/jclepro

за Lucía Mayorga Mogollón ^a,

Laun America Memane Project Conadorators), Alexander Mikolov Hristov d,

Contents lists available at ScienceDirect

Journal of Cleaner Production 384 (2023) 135523

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Science of The Total Environment

Volume 825, 15 June 2022, 153982

Prediction of enteric methane emissions by sheep using an intercontinental database

Alejandro Belanche a,b,*, Alexander N. Hristov , Henk J. van Lingen , Stuart E. Denman , Ermias Kebreab , Angela Schwarm , Michael Kreuzer , Mutian Niu , Maguy Eugène , Vincent Niderkorn , Cécile Martin , Harry Archimède , Mark McGee , Christopher K. Reynolds , Les A. Crompton , Ali Reza Bayat , Zhongtang Yu , André Bannink , Jan Dijkstra , Alex V. Chaves , Harry Clark , Stefan Muetzel , Vibeke Lind , Jon M. Moorby , John A. Rooke , Aurélie Aubry , Walter Antezana , Min Wang , Roger Hegarty , V. Hutton Oddy , Julian Hill , Philip E. Vercoe , Jean Víctor Savian , Adibe Luiz Abdalla , Yosra A. Soltan , Alda Lúcia Gomes Monteiro , Juan Carlos Ku-Vera , Gustavo Jaurena , Carlos A. Gómez-Bravo , Olga L. Mayorga , Guilhermo F.S. Congio , David R. Yáñez-Ruiz , **

Prediction of enteric methane production and yield in dairy cattle using a Latin America and

Caribbean database

B Guilhermo F.S. Congio ^a △ ☒, André Bannink ^b, Olga L. Mayorga ^c, Joāo P.P. Rodrigues ^d, Adeline Bougouin ^e,

Jali Ermias Kebreab ^e, Ricardo R. Silva ^f, Rogério M. Maurício ^g, Sila C. da Silva ^a, Patrícia P.A. Oliveira ^h, Camila Muñoz dai Luiz G.R. Pereira ^J, Carlos Gómez ^k, Claudia Ariza-Nieto ^c, Henrique M.N. Ribeiro-Filho ^J, Octavio A. Castelán-Ortega ^m, Jaime R. Rosero-Noguera ⁿ, Maria P. Tieri ^{o, p} ... Alexander N. Hristov ^u

Flagship project 'feed additives': Special issue 6 papers in JDS

J. Dairy Sci. TBC:1–18 https://doi.org/10.3168/jds.2024-25051

© TBC, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Special Issue: Regulatory frameworks and scientific evidence requirements for the authorization of feed additives to mitigate ruminant methane emissions

Juan M. Tricarico, 1* © Florencia Garcia, 2 © André Bannink, 3 © Sang-Suk Lee, 4 © Michelle A. Miguel, 4 © John R. Newbold, 5 © Peri K. Rosenstein, 6 © Matthew R. Van der Saag, 7 © and David R. Yáñez-Ruiz 8 ©

JDS25051

ation[®].

JDS25050

This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Special issue: Recommendations for testing enteric methanemitigating feed additives in ruminant studies

Alexander N. Hristov, 1* André Bannink, 2 Marco Battelli, 3 Alejandro Belanche, 4 M. Cecilia Cajarville Sanz, 5 Gonzalo Fernandez-Turren, 5.6 Florencia Garcia, 7 Arjan Jonker, 8 David A. Kenny, 9 Vibeke Lind, 10 Sarah J. Meale, 11 David Meo Zilio, 12 Camila Muñoz, 13 David Pacheco, 8 Nico Peiren, 14 Mohammad Ramin, 15 Luca Rapetti, 3 Angela Schwarm, 16 Sokratis Stergiadis, 17 Katerina Theodoridou, 18 Emilio M. Ungerfeld, 19 Sanne van Gastelen, 2 David R. Yáñez-Ruiz, 20 Sinead M. Waters, 21 and Peter Lund 22*

J. Dairy Sci. TBC:1–21 https://doi.org/10.3168/jds.2024-25046

© TBC, The Authors. Published by Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Special Issue: A guideline to uncover the mode of action of antimethanogenic feed additives for ruminants

Alejandro Belanche, ** André Bannink, *2 Jan Dijkstra, *3 Zoey Durmic, *4 Florencia Garcia, *5 Fernanda G. Santos, *6 Sharon Huws, *6 Jeyamalar Jeyanathan, *7 Peter Lund, *8 Roderick I. Mackie, *9 Tim A. McAllister, *10 Diego P. Morgavi, *11 Stefan Muetzel, *12 Dipti W. Pitta, *13 David R. Yáñez-Ruiz, *14 and Emilio M. Ungerfeld**

JDS25046

FNN Activities

- Projects (Global Network 2014-2017; CEDERS 2017-2021; Integrity 2022-2026)
- Latin American/Caribbean and SouthEast Asian projects
- GRA flagship on FEED ADDITIVES 2022-2025
- Africa / Eastern Europe / Middle East?

FNN Activities 2024-2025

Bimonthly list of papers published by the groups in the network + jobs offers/

opportunities

	A	В	C	D	E	F
1	TITLE	Contact	DOI	Summary	Link	
2	Effect of combining the methanogenesis inhibitor 3-nitrooxypropanol ar	Muñoz, C., I. A. Muñoz,	https://doi	No single enteric CH ₄ mitig	https://ww	w.scien
3	Indications for a lower methane yield from digested fibre in ruminants dig	M. Terranova a,*, M. Kre	https://doi	It is assumed that the absol	ute amount	of meth
4	Evaluation of ruminal methaneand ammonia formation and microbiotac	Giulia Foggi 1*, Melissa	https://doi	Background Dietary supple	ments based	on tan
5	Predicting CO2 production of lactating dairy cows from animal, dietary, a	M. H Kjeldsen, 1 * M. Joh	https://doi	Automated measurements	of the ratio	ofconce
6	Antimethanogenic activity of Monascus metabolites in the rumen revealed	Boudra, H., E. Rathahao	http://doi.d	Monascus-fermented cerea	ls reduce me	thane r
7	Evaluating the effect of phenolic compounds as hydrogen acceptors when	Huang, R., P. Romero, A	http://doi.d	Some antimethanogenic fe	ed additives	for rum
8	Crop-livestock-forestry systems as a strategy for mitigating greenhouse ga	Monteiro, A., L. Barreto	http://doi.d	Intensification of livestock	systems beco	omes es
9	Review: Reducing enteric methane emissions improves energy metabolis	Morgavi, D. P., G. Canta	http://doi.d	The production of enteric r	methane in tl	he gastr
10	Exploring the combination of Asparagopsis taxiformis and phloroglucino	Romero, P., E. M. Unger	http://doi.d	Many strategies for mitigat	ing enteric m	nethane
11	Recent Advances in Enteric Methane Mitigation and the Long Road to Sus	Roques, S., G. Martinez-	http://doi.d	Mitigation of methane emi	ssion, a pote	nt gree
12	«lodine intake and excretion from sheep supplemented with macroalgae	Vibeke Lind <vibeke.lind< th=""><th>10.3389/fa</th><th>The paper is a first of three</th><th>https://ww</th><th>w.front</th></vibeke.lind<>	10.3389/fa	The paper is a first of three	https://ww	w.front
13	Effects of graded levels of dietary pomegranate peel on methane and nitro	Niu P, Kreuzer M, Lieseg	10,3168	This study aimed to quanti	https://doi.	org/10
14	Rumen microbial degradation of bromoformfrom red seaweed (Asparago	Alejandro Belanchebela	10.1186/s4	This study aimed to investi	https://doi.	.org/10
15	Evaluating the effect of phenolic compounds as hydrogen acceptorswhen	Alejandro Belanchebela	10.1016/j.a	Most mitigation strategies	https://doi.	.org/10
16	Beef production and the beef evaluation system in Chile: Description, cha	Arias, RA.	https://doi	Most Chilean beef production	tion is based	on pas
17	Effect of a blend of cinnamaldehyde, eugenol and capsicum oleoresin on i	Sara M Tondini, Ali R I	https://doi	The objective of this stud	https://ww	w.scien
18						

Database of papers published by members

 Bimonthly list of papers published by the groups in the network + jobs offers/ opportunities

Annual Workshop – November 2024 – Feed additives Special Issue webinar

Annual workshop – October 2025
 *new coordinator

Feed and Nutrition Network

Thank you

david.Yanez@eez.csic.es

andre.bannink@wur.nl